D. Nauuo and Circle

•参考资料

  [1]:https://www.cnblogs.com/wyxdrqc/p/10990378.html

题意

  给出你一个包含 n 个点的树,这 n 个点编号为 1~n;

  给出一个圆,圆上放置 n 个位置,第 i 个位置对应树中的某个节点,并且不重复;

  求在圆上还原这棵树后,使得边不相交的总方案数;

题解

  

  ①为何每一颗子树一定是连续的一段圆弧?

    假设不是连续的圆弧,如图所示:

    

    为了使 x 接到树上,必然会有 x-y 或 x-z 相连的边,这样就会出现交点;

  ②对于以 u 为根的子树,假设 u 有两个儿子 a,b,那么,需要找连续的 x+y+1 个位置放置这些节点;

    

    (x:以a为根节点的子树节点个数,y:以b为根节点的子数的节点个数)

    也就是图中的sum1,sum2,sum3位置;

    u可以放在这三个位置的任意一个位置,a 从剩余的两个位置中选,b只有一个位置可选;

    总的方案数为 3!;

    但是每个方案中 a,b 都有排列方案,故需要乘上 fa×fb;

    对于树的根节点 1,一共有 n 个位置可放,求出其中一个的方案数 f1,答案就是 n×f1

Code

 #include<bits/stdc++.h>
using namespace std;
#define ll long long
#define memF(a,b,n) for(int i=0;i <= n;a[i++]=b);
const int maxn=2e5+;
const int MOD=; int n;
int num;
int head[maxn];
struct Edge
{
int to,next;
}G[maxn<<];
void addEdge(int u,int v)
{
G[num]=Edge{v,head[u]};
head[u]=num++;
}
ll fact[maxn];
ll dp[maxn];///与f函数功能相同
vector<int >son[maxn];
void DFS(int u,int f)
{
for(int i=head[u];~i;i=G[i].next)
{
int v=G[i].to;
if(v == f)
continue; son[u].push_back(v);
DFS(v,u);
} int k=son[u].size()+(u != ? :);///如果u=1就不用再找u可放置的位置,因为1已经被固定了
dp[u]=fact[k];
for(int i=;i < son[u].size();++i)
dp[u]=dp[u]*dp[son[u][i]]%MOD;
}
ll Solve()
{
for(int i=;i <= n;++i)
son[i].clear(); DFS(,); return dp[]*n%MOD;
}
void Init()
{
num=;
memF(head,-,n);
fact[]=;
for(int i=;i <= n;++i)
fact[i]=(i*fact[i-])%MOD;
}
int main()
{
scanf("%d",&n);
Init();
for(int i=;i < n;++i)
{
int u,v;
scanf("%d%d",&u,&v);
addEdge(u,v);
addEdge(v,u);
}
printf("%lld\n",Solve());
return ;
}

Codeforces Round #564 (Div. 2) D. Nauuo and Circle(树形DP)的更多相关文章

  1. Codeforces Round #564 (Div. 2) C. Nauuo and Cards

    链接:https://codeforces.com/contest/1173/problem/C 题意: Nauuo is a girl who loves playing cards. One da ...

  2. Codeforces Round #564 (Div. 2) B. Nauuo and Chess

    链接:https://codeforces.com/contest/1173/problem/B 题意: Nauuo is a girl who loves playing chess. One da ...

  3. Codeforces Round #564 (Div. 2) A. Nauuo and Votes

    链接:https://codeforces.com/contest/1173/problem/A 题意: Nauuo is a girl who loves writing comments. One ...

  4. Codeforces Round #196 (Div. 2) D. Book of Evil 树形dp

    题目链接: http://codeforces.com/problemset/problem/337/D D. Book of Evil time limit per test2 secondsmem ...

  5. Codeforces Round #382 (Div. 2) 继续python作死 含树形DP

    A - Ostap and Grasshopper zz题能不能跳到  每次只能跳K步 不能跳到# 问能不能T-G  随便跳跳就可以了  第一次居然跳越界0.0  傻子哦  WA1 n,k = map ...

  6. Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】

    题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...

  7. Codeforces Round #419 (Div. 1) C. Karen and Supermarket 树形DP

    C. Karen and Supermarket     On the way home, Karen decided to stop by the supermarket to buy some g ...

  8. Codeforces Round #564 (Div. 1)

    Codeforces Round #564 (Div. 1) A Nauuo and Cards 首先如果牌库中最后的牌是\(1,2,\cdots, k\),那么就模拟一下能不能每次打出第\(k+i\ ...

  9. Codeforces Round #267 (Div. 2) C. George and Job(DP)补题

    Codeforces Round #267 (Div. 2) C. George and Job题目链接请点击~ The new ITone 6 has been released recently ...

随机推荐

  1. Linux安装JDK和Tomcat

    步骤如下: 1)在/root用户下建立jdk和tomcat两个文件夹并上传jdk-7u80-linux-x64.rpm和apache-tomcat-7.0.82.zip   2)安装jdk #  rp ...

  2. 自定义View系列教程01--常用工具介绍

    站在源码的肩膀上全解Scroller工作机制 Android多分辨率适配框架(1)- 核心基础 Android多分辨率适配框架(2)- 原理剖析 Android多分辨率适配框架(3)- 使用指南 自定 ...

  3. Spring → 02:开发初步

    一.搭建开发环境 1.1.IDE的安装和配置 1.2.开发包的准备及开发包介绍 二.Hello World 2.1.Bean的编码 2.2.Spring配置文件编写 2.3.测试与运行 三.Sprin ...

  4. Linux终端常用命令(一)

    基本操作 展示全部的环境变量 export 搜索可执行文件.源文件 whereis ls 在环境变量中搜索可执行文件,并打印完整路径 which ls 展示用户命令,系统调用.库函数等 whatis ...

  5. hdu1532&&poj1273 最大流

    Dinic算法: 层次图:根据源点到该点的距离建图,这里设相邻的都差1. (下面部分转) 在这幅图中我们首先要增广1->2->4->6,这时可以获得一个容量为2的流,但是如果不建立4 ...

  6. map的三种遍历方法!

    map的三种遍历方法!   集合的一个很重要的操作---遍历,学习了三种遍历方法,三种方法各有优缺点~~ /* * To change this template, choose Tools | Te ...

  7. js全局方法

    1.eval() 参数:string要计算的表达式或要执行的语句 返回值:计算结果或者执行结果 使用方法: (1)eval("2+2")返回值:4 (2)eval("x= ...

  8. iOS 获取一个类的所有方法

    #import <objc/runtime.h> #import <objc/message.h> 需要导入运行时头文件和消息发送文件 - (void)runTests { u ...

  9. 使用epoll实现简单的服务器

    1. 头文件 #ifndef __TCP_SERVER_H__ #define __TCP_SERVER_H__ #include <unistd.h> #include <stdi ...

  10. uva 11754 Code Feat (中国剩余定理)

    UVA 11754 一道中国剩余定理加上搜索的题目.分两种情况来考虑,当组合总数比较大的时候,就选择枚举的方式,组合总数的时候比较小时就选择搜索然后用中国剩余定理求出得数. 代码如下: #includ ...