• explained_variance_score()
  • mean_absolute_error()
  • mean_squared_error()
  • r2_score()

以上四个函数的相同点:

  • 这些函数都有一个参数“multioutput”,用来指定在多目标回归问题中,若干单个目标变量的损失或得分以什么样的方式被平均起来
  • 它的默认值是“uniform_average”,他就是将所有预测目标值的损失以等权重的方式平均起来
  • 如果你传入了一个shape为(n_oupputs,)的ndarray,那么数组内的数将被视为是对每个输出预测损失(或得分)的加权值,所以最终的损失就是按照你锁指定的加权方式来计算的
  • 如果multioutput是“raw_values”,那么所有的回归目标的预测损失或预测得分都会被单独返回一个shape是(n_output)的数组中

explained_variance_score

#explained_variance_score
from sklearn.metrics import explained_variance_score
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(explained_variance_score(y_true,y_pred))
y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(explained_variance_score(y_true,y_pred,multioutput="raw_values"))
print(explained_variance_score(y_true,y_pred,multioutput=[0.3,0.7])) #结果
#0.957173447537
#[ 0.96774194 1. ]
#0.990322580645

mean_absolute_error

#mean_absolute_error
from sklearn.metrics import mean_absolute_error
y_true=[3,0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(mean_absolute_error(y_true,y_pred)) y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(mean_absolute_error(y_true,y_pred))
print(mean_absolute_error(y_true,y_pred,multioutput="raw_values"))
print(mean_absolute_error(y_true,y_pred,multioutput=[0.3,0.7])) #结果
#0.5
#0.75
#[ 0.5 1. ]
#0.85

mean_squared_error

#mean_squared_error
from sklearn.metrics import mean_squared_error
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(mean_squared_error(y_true,y_pred))
y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(mean_squared_error(y_true,y_pred)) #结果
#0.375
#0.708333333333

median_absolute_error

#median_absolute_error
from sklearn.metrics import median_absolute_error
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(median_absolute_error(y_true,y_pred)) #结果
#0.5

r2_score

#r2_score
from sklearn.metrics import r2_score
y_true=[3,-0.5,2,7]
y_pred=[2.5,0.0,2,8]
print(r2_score(y_true,y_pred)) y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(r2_score(y_true,y_pred,multioutput="variance_weighted")) y_true=[[0.5,1],[-1,1],[7,-6]]
y_pred=[[0,2],[-1,2],[8,-5]]
print(r2_score(y_true,y_pred,multioutput="uniform_average"))
print(r2_score(y_true,y_pred,multioutput="raw_values"))
print(r2_score(y_true,y_pred,multioutput=[0.3,0.7])) #结果
#0.948608137045
#0.938256658596
#0.936800526662
#[ 0.96543779 0.90816327]
#0.92534562212

sklearn中回归器性能评估方法的更多相关文章

  1. sklearn中的回归器性能评估方法(转)

    explained_variance_score() mean_absolute_error() mean_squared_error() r2_score() 以上四个函数的相同点: 这些函数都有一 ...

  2. sklearn中的回归器性能评估方法

    explained_variance_score() mean_absolute_error() mean_squared_error() r2_score() 以上四个函数的相同点: 这些函数都有一 ...

  3. sklearn中各种分类器回归器都适用于什么样的数据呢?

    作者:匿名用户链接:https://www.zhihu.com/question/52992079/answer/156294774来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...

  4. Sklearn中的回归和分类算法

    一.sklearn中自带的回归算法 1. 算法 来自:https://my.oschina.net/kilosnow/blog/1619605 另外,skilearn中自带保存模型的方法,可以把训练完 ...

  5. 第十三次作业——回归模型与房价预测&第十一次作业——sklearn中朴素贝叶斯模型及其应用&第七次作业——numpy统计分布显示

    第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模 ...

  6. sklearn中模型评估和预测

    一.模型验证方法如下: 通过交叉验证得分:model_sleection.cross_val_score(estimator,X) 对每个输入数据点产生交叉验证估计:model_selection.c ...

  7. (数据科学学习手札25)sklearn中的特征选择相关功能

    一.简介 在现实的机器学习任务中,自变量往往数量众多,且类型可能由连续型(continuou)和离散型(discrete)混杂组成,因此出于节约计算成本.精简模型.增强模型的泛化性能等角度考虑,我们常 ...

  8. sklearn中的模型评估-构建评估函数

    1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scor ...

  9. 通俗地说逻辑回归【Logistic regression】算法(二)sklearn逻辑回归实战

    前情提要: 通俗地说逻辑回归[Logistic regression]算法(一) 逻辑回归模型原理介绍 上一篇主要介绍了逻辑回归中,相对理论化的知识,这次主要是对上篇做一点点补充,以及介绍sklear ...

随机推荐

  1. (转)OpenFire源码学习之二十七:Smack源码解析

    转:http://blog.csdn.net/huwenfeng_2011/article/details/43484199 Smack Smack是一个用于和XMPP服务器通信的类库,由此可以实现即 ...

  2. sklearn中standardscaler中fit_transform()和transform()有什么区别,应该怎么使用?

    在根据机器学习书中提供的实例中,看到需要对训练和测试的特征数据进行标准化. 但是使用的是有两个函数, 对于训练数据,使用的是fit_transform()函数 对于测试数据,使用的是tansform( ...

  3. CSS:CSS 文本格式

    ylbtech-CSS:CSS 文本格式 1.返回顶部 1. CSS 文本格式 文本格式 This text is styled with some of the text formatting pr ...

  4. Python中使用item()方法遍历字典的例子

    Python中使用item()方法遍历字典的例子 这篇文章主要介绍了Python中使用item()方法遍历字典的例子,for...in这种是Python中最常用的遍历字典的方法了,需要的朋友可以参考下 ...

  5. python中的缓存技术

    python缓存技术 def console(a,b): print('进入函数') return (a,b) print(console(3,'a')) print(console(2,'b')) ...

  6. HTTP协议的消息头:Content-Type和Accept的作用 转载https://www.cnblogs.com/lexiaofei/p/7289436.html

    一.背景知识 1.概述 Http报头分为通用报头,请求报头,响应报头和实体报头. 请求方的http报头结构:通用报头|请求报头|实体报头 响应方的http报头结构:通用报头|响应报头|实体报头 Acc ...

  7. MySQL之explain命令解释

    explain显示了mysql如何使用索引来处理select语句以及连接表.可以帮助选择更好的索引和写出更优化的查询语句. 使用方法,在select语句前加上explain就可以了.如: explai ...

  8. java-day02

    数据类型自动转换 要求:数据范围从小到大 数据类型强制类型转换 格式:范围小的数据类型 范围小的变量名 = (范围小的数据类型)原范围大的数据 注意事项: 1.可以会造成数据溢出或者是精度损失. 2. ...

  9. 枚举加countdownLatch的使用

    package com.cxy.juc; import java.util.concurrent.CountDownLatch; public class CountDownlatchDemo { p ...

  10. 影响RAKsmart服务器稳定性的相关因素

    RAKsmart美国服务器近年来凭借着成熟的技术和性价比吸引着广大站长,那RAKsmart服务器稳定性怎么样呢?有什么影响因素呢?下面来了解一下吧. 因素一:服务器配置 服务器能正常运营是建立在服务器 ...