import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,ensemble
from sklearn.model_selection import train_test_split def load_data_regression():
'''
加载用于回归问题的数据集
'''
#使用 scikit-learn 自带的一个糖尿病病人的数据集
diabetes = datasets.load_diabetes()
# 拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) #集成学习随机森林RandomForestRegressor回归模型
def test_RandomForestRegressor(*data):
X_train,X_test,y_train,y_test=data
regr=ensemble.RandomForestRegressor()
regr.fit(X_train,y_train)
print("Traing Score:%f"%regr.score(X_train,y_train))
print("Testing Score:%f"%regr.score(X_test,y_test)) # 获取分类数据
X_train,X_test,y_train,y_test=load_data_regression()
# 调用 test_RandomForestRegressor
test_RandomForestRegressor(X_train,X_test,y_train,y_test)

def test_RandomForestRegressor_num(*data):
'''
测试 RandomForestRegressor 的预测性能随 n_estimators 参数的影响
'''
X_train,X_test,y_train,y_test=data
nums=np.arange(1,100,step=2)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
testing_scores=[]
training_scores=[]
for num in nums:
regr=ensemble.RandomForestRegressor(n_estimators=num)
regr.fit(X_train,y_train)
training_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
ax.plot(nums,training_scores,label="Training Score")
ax.plot(nums,testing_scores,label="Testing Score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(-1,1)
plt.suptitle("RandomForestRegressor")
plt.show() # 调用 test_RandomForestRegressor_num
test_RandomForestRegressor_num(X_train,X_test,y_train,y_test)

def test_RandomForestRegressor_max_depth(*data):
'''
测试 RandomForestRegressor 的预测性能随 max_depth 参数的影响
'''
X_train,X_test,y_train,y_test=data
maxdepths=range(1,20)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
testing_scores=[]
training_scores=[]
for max_depth in maxdepths:
regr=ensemble.RandomForestRegressor(max_depth=max_depth)
regr.fit(X_train,y_train)
training_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
ax.plot(maxdepths,training_scores,label="Training Score")
ax.plot(maxdepths,testing_scores,label="Testing Score")
ax.set_xlabel("max_depth")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(0,1.05)
plt.suptitle("RandomForestRegressor")
plt.show() # 调用 test_RandomForestRegressor_max_depth
test_RandomForestRegressor_max_depth(X_train,X_test,y_train,y_test)

def test_RandomForestRegressor_max_features(*data):
'''
测试 RandomForestRegressor 的预测性能随 max_features 参数的影响
'''
X_train,X_test,y_train,y_test=data
max_features=np.linspace(0.01,1.0)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
testing_scores=[]
training_scores=[]
for max_feature in max_features:
regr=ensemble.RandomForestRegressor(max_features=max_feature)
regr.fit(X_train,y_train)
training_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
ax.plot(max_features,training_scores,label="Training Score")
ax.plot(max_features,testing_scores,label="Testing Score")
ax.set_xlabel("max_feature")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(0,1.05)
plt.suptitle("RandomForestRegressor")
plt.show() # 调用 test_RandomForestRegressor_max_features
test_RandomForestRegressor_max_features(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型的更多相关文章

  1. 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  2. 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  3. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  4. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  5. 机器学习:集成学习:随机森林.GBDT

    集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测 ...

  6. 吴裕雄 python 机器学习——伯努利贝叶斯BernoulliNB模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...

  7. 吴裕雄 python 机器学习——数据预处理过滤式特征选取SelectPercentile模型

    from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def ...

  8. 吴裕雄 python 机器学习——数据预处理过滤式特征选取VarianceThreshold模型

    from sklearn.feature_selection import VarianceThreshold #数据预处理过滤式特征选取VarianceThreshold模型 def test_Va ...

  9. 吴裕雄 python 机器学习——数据预处理字典学习模型

    from sklearn.decomposition import DictionaryLearning #数据预处理字典学习DictionaryLearning模型 def test_Diction ...

随机推荐

  1. 【你不知道的javaScript 上卷 笔记1】 javaScript 是如何工作的?

    一.什么是作用域? 作用域是用来存储变量以及方便寻找变量的一套规则. 二.javaScript 编译过程(编译发生在代码执行前的几微妙) 分词/词法分析(Tokenizing/Lexing)-> ...

  2. nginx配置从远程获取静态资源

    前置条件:现有两台内网互通机器192.168.0.100.192.168.0.101,其中192.168.0.100可以通过外网网络.业务需求:需要通过外网访问处于192.168.0.101机器上的静 ...

  3. PHP 实现微信小程序敏感图片、内容检测接口

    主要是为了调用微信小程序msgSecCheck.imgSecCheck接口. 先附上小程序接口说明文档地址:https://developers.weixin.qq.com/miniprogram/d ...

  4. Linux系统搭建Java环境【JDK、Tomcat、MySQL】一篇就够

      前言:所有项目在完成开发后都会部署上线的,一般都是用Linux系统作为服务器的,很少使用Windows Server(大多数项目的开发都是在Windows桌面系统完成的),一般有专门负责上线的人员 ...

  5. C语言回文链表

    要求:请判断一个链表是否为回文链表. 示例 1: 输入: 1->2 输出: false 示例 2: 输入: 1->2->2->1 输出: true思路:利用快慢双指针+反转半链 ...

  6. 白面系列 redis

    redis是Key-Value数据库,和Memcached类似.value可以是多种类型,如Strings, Lists, Hashes, Sets 及 Ordered Sets等. redis一个牛 ...

  7. JDBC——Statement执行SQL语句的对象

    Statement该对象用于执行静态SQL语句并返回它产生的结果.表示所有的参数在生成SQL的时候都是拼接好的,容易产生SQL注入的问题 PreparedStatement对象是一个预编译的SQL语句 ...

  8. 3ds Max File Format (Part 3: The department of redundancy department; Config)

    Now we'll have a look at the Config stream. It begins like follows, and goes on forever with various ...

  9. RGBA alpha 透明度混合算法

    RGBA alpha 透明度混合算法 .分类: 图像处理 Ps技术 2011-05-25 09:11 1112人阅读 评论(0) 收藏 举报 Alpha 透明度混合算法,网上收集整理,分成以下三种: ...

  10. POJ3122 Pie(二分)

    题目链接:http://poj.org/problem?id=3122 题意:一堆人分蛋糕,每人蛋糕大小一样,求最大能分多少,蛋糕必须是整块整块的,不能两块拼一起.然后注意输入F个人最后要分F+1份. ...