import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,ensemble
from sklearn.model_selection import train_test_split def load_data_regression():
'''
加载用于回归问题的数据集
'''
#使用 scikit-learn 自带的一个糖尿病病人的数据集
diabetes = datasets.load_diabetes()
# 拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) #集成学习随机森林RandomForestRegressor回归模型
def test_RandomForestRegressor(*data):
X_train,X_test,y_train,y_test=data
regr=ensemble.RandomForestRegressor()
regr.fit(X_train,y_train)
print("Traing Score:%f"%regr.score(X_train,y_train))
print("Testing Score:%f"%regr.score(X_test,y_test)) # 获取分类数据
X_train,X_test,y_train,y_test=load_data_regression()
# 调用 test_RandomForestRegressor
test_RandomForestRegressor(X_train,X_test,y_train,y_test)

def test_RandomForestRegressor_num(*data):
'''
测试 RandomForestRegressor 的预测性能随 n_estimators 参数的影响
'''
X_train,X_test,y_train,y_test=data
nums=np.arange(1,100,step=2)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
testing_scores=[]
training_scores=[]
for num in nums:
regr=ensemble.RandomForestRegressor(n_estimators=num)
regr.fit(X_train,y_train)
training_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
ax.plot(nums,training_scores,label="Training Score")
ax.plot(nums,testing_scores,label="Testing Score")
ax.set_xlabel("estimator num")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(-1,1)
plt.suptitle("RandomForestRegressor")
plt.show() # 调用 test_RandomForestRegressor_num
test_RandomForestRegressor_num(X_train,X_test,y_train,y_test)

def test_RandomForestRegressor_max_depth(*data):
'''
测试 RandomForestRegressor 的预测性能随 max_depth 参数的影响
'''
X_train,X_test,y_train,y_test=data
maxdepths=range(1,20)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
testing_scores=[]
training_scores=[]
for max_depth in maxdepths:
regr=ensemble.RandomForestRegressor(max_depth=max_depth)
regr.fit(X_train,y_train)
training_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
ax.plot(maxdepths,training_scores,label="Training Score")
ax.plot(maxdepths,testing_scores,label="Testing Score")
ax.set_xlabel("max_depth")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(0,1.05)
plt.suptitle("RandomForestRegressor")
plt.show() # 调用 test_RandomForestRegressor_max_depth
test_RandomForestRegressor_max_depth(X_train,X_test,y_train,y_test)

def test_RandomForestRegressor_max_features(*data):
'''
测试 RandomForestRegressor 的预测性能随 max_features 参数的影响
'''
X_train,X_test,y_train,y_test=data
max_features=np.linspace(0.01,1.0)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
testing_scores=[]
training_scores=[]
for max_feature in max_features:
regr=ensemble.RandomForestRegressor(max_features=max_feature)
regr.fit(X_train,y_train)
training_scores.append(regr.score(X_train,y_train))
testing_scores.append(regr.score(X_test,y_test))
ax.plot(max_features,training_scores,label="Training Score")
ax.plot(max_features,testing_scores,label="Testing Score")
ax.set_xlabel("max_feature")
ax.set_ylabel("score")
ax.legend(loc="lower right")
ax.set_ylim(0,1.05)
plt.suptitle("RandomForestRegressor")
plt.show() # 调用 test_RandomForestRegressor_max_features
test_RandomForestRegressor_max_features(X_train,X_test,y_train,y_test)

吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型的更多相关文章

  1. 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  2. 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  3. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  4. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  5. 机器学习:集成学习:随机森林.GBDT

    集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测 ...

  6. 吴裕雄 python 机器学习——伯努利贝叶斯BernoulliNB模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...

  7. 吴裕雄 python 机器学习——数据预处理过滤式特征选取SelectPercentile模型

    from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def ...

  8. 吴裕雄 python 机器学习——数据预处理过滤式特征选取VarianceThreshold模型

    from sklearn.feature_selection import VarianceThreshold #数据预处理过滤式特征选取VarianceThreshold模型 def test_Va ...

  9. 吴裕雄 python 机器学习——数据预处理字典学习模型

    from sklearn.decomposition import DictionaryLearning #数据预处理字典学习DictionaryLearning模型 def test_Diction ...

随机推荐

  1. CF399B Red and Blue Balls

    题目 CF399B 洛谷RemoteJudge 思路 很容易发现,栈中靠上的蓝色球的出栈,对它下方的蓝色球没有影响. 举个例子: 第一步中靠上的蓝色球在第三步出栈了,这一过程对它下面的蓝色球(即第一步 ...

  2. linux 扩展内存

    一.逻辑卷创建使用 https://www.cnblogs.com/xiaoluo501395377/archive/2013/05/24/3096087.html fdisk -l pvcreate ...

  3. js基础 之 引用类型

    引用类型的值(对象)是引用类型的一个实例.引用类型是一种数据结构,用于将数据和功能组织在一起 对象是某个特定引用类型的实例.新对象是使用new操作符后跟一个构造函数来创建的.构造函数本身就是一个函数, ...

  4. 从零开始教你做高保真原型图+UI 设计规范

    编者按:<从零开始设计App>系列到这篇已经是第三期了,上期是低保真原型图,这期@Sophia的玲珑阁 聊聊如何从零开始制作高保真原型图和UI 设计规范. 往期回顾: <设计师怎样从 ...

  5. JS高级---总结继承

    总结继承 面向对象特性: 封装, 继承,多态 继承, 类与类之间的关系, 面向对象的语言的继承是为了多态服务的   js不是面向对象的语言, 但是可以模拟面向对象,模拟继承,为了节省内存   继承: ...

  6. 虚拟机linux系统网络连接配置问题总结

    1.虚拟机与CentOS的安装与配置参考本人博客:https://www.cnblogs.com/ClikeL/p/11743520.html 2.测试网络连接 ping www.baidu.com ...

  7. 2019-08-01 纪中NOIP模拟B组

    T1 [JZOJ2642] 游戏 题目描述 Alice和Bob在玩一个游戏,游戏是在一个N*N的矩阵上进行的,每个格子上都有一个正整数.当轮到Alice/Bob时,他/她可以选择最后一列或最后一行,并 ...

  8. AcWing 9. 分组背包问题

    #include <iostream> #include <algorithm> using namespace std; ; int n, m; int v[N][N], w ...

  9. egg.js 配置cors跨域

    1.egg简述 Egg.js,为企业级框架和应用而生,是阿里开源的企业级 Node.js 框架. 2.特点 Egg 奉行『约定优于配置』,按照一套统一的约定进行应用开发,团队内部采用这种方式可以减少开 ...

  10. 爬山 启发式合并 / STL

    题目 其实 Kano 曾经到过由乃山,当然这名字一看山主就是 Yuno 嘛.当年 Kano 看见了由乃山,内心突然涌出了一股杜甫会当凌绝顶,一览众山小的豪气,于是毅然决定登山. 但是 Kano 总是习 ...