Description

如今的道路收费发展很快。道路的密度越来越大,因此选择最佳路径是很现实的问题。城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用。

路径是连续经过的道路组成的。总时间是各条道路旅行时间的和,总费用是各条道路所支付费用的总和。一条路径越快,或者费用越低,该路径就越好。严格地说,如果一条路径比别的路径更快,而且不需要支付更多费用,它就比较好。反过来也如此理解。如果没有一条路径比某路径更好,则该路径被称为最小路径。

这样的最小的路径有可能不止一条,或者根本不存在路径。

问题:读入网络,计算最小路径的总数。费用时间都相同的两条最小路径只算作一条。你只要输出不同种类的最小路径数即可。

Input

第一行有四个整数,城市总数 \(n\),道路总数 \(m\),起点和终点城市 \(s\),\(e\);

接下来的 \(m\) 行每行描述了一条道路的信息,包括四个整数,两个端点 \(p\),\(r\),费用 \(c\),以及时间 \(t\);

两个城市之间可能有多条路径连接。

Output

仅一个数,表示最小路径的总数。

Sample Input

4 5 1 4

2 1 2 1

3 4 3 1

2 3 1 2

3 1 1 4

2 4 2 4

Sample Output

2

HINT


题解

首先,题目中对最小路径的描述有些歧义,实际上最小路径 \(u\) 应满足不存在路径 \(v\) 使 \(cost[v] \leq cost[u]\),\(len[v] \leq len[u]\)

这可以说是一道 \(DP\) 题,也可以说是一道分层图 \(SPFA\)(本质是一样的)

分层图 \(SPFA\) 要好写一些。

设 \(f[i][j]\) 表示走到第 \(i\) 个结点,费用为 \(j\) 时的最短路

“转移”就是 \(f[k][j+cost]=min(f[k][j+cost],f[i][j]+len)\) ,不断更新

之后类似二维偏序,用树状数组就行了。


代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue> using namespace std; const int N = 105;
typedef pair<int,int> P; struct node {
int v,len,cost;
node *next;
}pool[N*6],*h[N];
int cnt;
void addedge(int u,int v,int len,int cost){
node *p=&pool[++cnt],*q=&pool[++cnt];
p->v=v;p->next=h[u];h[u]=p;p->len=len;p->cost=cost;
q->v=u;q->next=h[v];h[v]=q;q->len=len;q->cost=cost;
} int n,m,s1,s2,S,T;
int f[N][N*N],vis[N][N*N];
queue<P> que;
void spfa(){
for(int i=1;i<=n;i++)
for(int j=0;j<=s1;j++) f[i][j]=1e8;
f[S][0]=0; vis[S][0]=1; que.push(P(S,0));
while(!que.empty()){
int u=que.front().first,c=que.front().second,v;
que.pop();
vis[u][c]=0;
s2=max(s2,f[u][c]);
if(u==T) continue;
for(node *p=h[u];p;p=p->next)
if(c+p->cost<=s1 && f[v=p->v][c+p->cost]>f[u][c]+p->len){
f[v][c+p->cost]=f[u][c]+p->len;
if(!vis[v][c+p->cost]){
vis[v][c+p->cost]=1;
que.push(P(v,c+p->cost));
}
}
}
} int d[N*N];
int lowbit(int x) { return x&(-x); }
int add(int x,int y){
while(x<=s2){
d[x]+=y;
x+=lowbit(x);
}
}
int sum(int x){
int ret=0;
while(x){
ret+=d[x];
x-=lowbit(x);
}
return ret;
} int main()
{
int x,y,len,c,ans=0;
scanf("%d%d%d%d",&n,&m,&S,&T);
for(int i=0;i<m;i++){
scanf("%d%d%d%d",&x,&y,&c,&len);
addedge(x,y,len,c);
s1=max(s1,c);
}
s1*=(n-1); spfa();
s2++;
for(int i=0;i<=s1;i++)
if(f[T][i]!=1e8){
if(sum(f[T][i]+1)==0) ans++;
add(f[T][i]+1,1);
}
printf("%d\n",ans); return 0;
}

[bzoj1375] [Baltic2002] Bicriterial routing 双调路径的更多相关文章

  1. Bicriterial routing 双调路径 HYSBZ - 1375(分层最短路)

    Description 来越多,因此选择最佳路径是很现实的问题.城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用.路径由连续的道路组成.总时间是各条道路旅行时间的和,总费用是各条道路所支 ...

  2. bzoj1375 双调路径

    Description 来越多,因此选择最佳路径是很现实的问题.城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用.路径由连续的道路组成.总时间是各条道路旅行时间的和,总费用是各条道路所支 ...

  3. 题解 P5530 [BalticOI 2002]双调路径

    P5530 [BalticOI 2002]双调路径 输入样例: 4 5 1 4 2 1 2 1 3 4 3 1 2 3 1 2 3 1 1 4 2 4 2 4 样例如下图 样例说明: 从1到4有4条路 ...

  4. P5530 [BOI 2002]双调路径

    题意描述 [BOI 2002]双调路径 题意描述的确实不是很清楚(出题人惜字如金). 给定一张有 \(n\) 个点,\(m\) 条边的无向图,每条边有两个权值,分别表示经过这个点的代价和时间. 同时给 ...

  5. [BalticOI2002]Bicriterial routing

    OJ题号: BZOJ1375.ECNU1468 题目大意: 给定一个无向连通图,每条边有两个权值w1和w2.定义一条路径是优秀的当且仅当没有别的路径满足两个权值的和都比该路径小,求s到t的优秀路径条数 ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. 8.2/baltic神(水)题

    summary:10 bzoj1334: Description N个政党要组成一个联合内阁,每个党都有自己的席位数. 现在希望你找出一种方案,你选中的党的席位数要大于总数的一半,并且联合内阁的席位数 ...

  8. Neutron 理解 (3): Open vSwitch + GRE/VxLAN 组网 [Netruon Open vSwitch + GRE/VxLAN Virutal Network]

    学习 Neutron 系列文章: (1)Neutron 所实现的虚拟化网络 (2)Neutron OpenvSwitch + VLAN 虚拟网络 (3)Neutron OpenvSwitch + GR ...

  9. nodejs开发指南读后感

    nodejs开发指南读后感 阅读目录 使用nodejs创建http服务器; supervisor的使用及nodejs常见的调式代码命令了解; 了解Node核心模块; ejs模板引擎 Express 理 ...

随机推荐

  1. ASP.NET MVC 实现页落网资源分享网站+充值管理+后台管理(开篇)

    源码下载地址:http://www.yealuo.com/Sccnn/Detail?KeyValue=c891ffae-7441-4afb-9a75-c5fe000e3d1c     这是一个比较简单 ...

  2. activiti工作流引擎学习(三)

    5.接收任务活动(receiveTask,即等待活动)不是一个任务节点 接收任务是一个简单任务,他会等待回应消息的到达,当前,官方只实现了这个任务的java语义,当流程达到接受任务,流程状态会保存到数 ...

  3. 原生js重写each方法

    js原生有个for-each方法,但是只能遍历数组不能遍历对象; jq有个$.each倒是可以遍历数组和对象,但是项目中如果不想用jq呢,我们就用原生来写一个吧. [12,23,34].forEach ...

  4. CF Round #580(div2)题解报告

    CF Round #580(div2)题解报告 T1 T2 水题,不管 T3 构造题,证明大约感性理解一下 我们想既然存在解 \(|a[n + i] - a[i]| = 1\) 这是必须要满足的 既然 ...

  5. The Preliminary Contest for ICPC Asia Shanghai 2019 C Triple(FFT+暴力)

    The Preliminary Contest for ICPC Asia Shanghai 2019 C Triple(FFT+暴力) 传送门:https://nanti.jisuanke.com/ ...

  6. C# string和String的区别

    string是String的别名,功能没什么区别.但是具体代码约束如下

  7. cglib的使用

    前言 最近一直在看Spring源码,其实我之前一直知道AOP的基本实现原理: 如果针对接口做代理默认使用的是JDK自带的Proxy+InvocationHandler 如果针对类做代理使用的是Cgli ...

  8. easyUI demo2

    图片:               代码: jsp <%@ page language="java" import="java.util.*" pageE ...

  9. 力扣90——子集 II

    原题 给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: [1,2,2] 输出: [ [2], [1], [1,2,2], ...

  10. 20191121-3 Final阶段贡献分配规则

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2019fall/homework/10063 ”组长”组final阶段贡献分分配规则 组里五位成员分别有入团队 ...