正解:数论$dp$

解题报告:

传送门$QwQ$

考虑先质因数分解.所以$G$就相当于所有系数取$min$,$L$就相当于所有系数取$max$

这时候考虑,因为数据范围是$1e8$,$1e8$内最多有8个不同质因子,所以考虑状压记录每个质因子的系数是否取到了上界&下界.

状压$dp$就完事了.

$dbq$写得有点简陋,仔细港下趴$kk$

首先经过前面一番操作,题目已经变成了,给定一些集合,求或起来为全集的方案数$QwQ$

考虑这个强制选$x$怎么搞鸭,先设$st$表示$x$的状态,$tot$表示满集.

于是有答案为$tot\ xor\ st$的所有满集中不包含$x$的方案数的和.

发现除非是满集,否则$tot\ xor\ st$的超级不可能包含$x$.

所以答案变成

超级中非满集不包含$x$的方案数+满集中不包含$x$的方案数

=超级中非满集的方案数+满集方案数-满集中强制选$x$的方案数

又因为答案就是满集中强制选$x$的方案数.

所以答案=(超级中非满集的方案数+满集方案数)/2

(这是一篇口糊,锅了不要怪我$kk$

洛谷$P5366\ [SNOI2017]$遗失的答案 数论+$dp$的更多相关文章

  1. luogu P5366 [SNOI2017]遗失的答案

    luogu 首先gcd为\(G\),lcm为\(L\),有可能出现的数(指同时是\(G\)的因数以及是\(L\)的倍数)可以发现只有几百个.如果选出的数要能取到gcd,那么对于每种质因子,都要有一个数 ...

  2. 【BZOJ5019】[SNOI2017]遗失的答案(FWT,动态规划)

    [BZOJ5019][SNOI2017]遗失的答案(FWT,动态规划) 题面 BZOJ 题解 发现\(10^8\)最多分解为不超过\(8\)个本质不同质数的乘积. 而\(gcd\)和\(lcm\)分别 ...

  3. E 洛谷 P3598 Koishi Loves Number Theory[数论]

    题目描述 Koishi十分喜欢数论. 她的朋友Flandre为了检测她和数论是不是真爱,给了她一个问题. 已知 给定和个数,求对取模. 按照套路,呆萌的Koishi当然假装不会做了,于是她来向你请教这 ...

  4. 冰精冻西瓜[P3787洛谷]

    题目描述 琪露诺是拥有操纵冷气程度的能力的妖精,一天她发现了一片西瓜地.这里有n个西瓜,由n-1条西瓜蔓连接,形成一个有根树,琪露诺想要把它们冷冻起来慢慢吃. 这些西瓜蔓具有神奇的性质,可以将经过它的 ...

  5. BZOJ5019[Snoi2017]遗失的答案——FWT+状压DP

    题目描述 小皮球在计算出答案之后,买了一堆皮肤,他心里很开心,但是一不小心,就忘记自己买了哪些皮肤了.==|||万 幸的是,他还记得他把所有皮肤按照1-N来编号,他买来的那些皮肤的编号(他至少买了一款 ...

  6. 3150luogu洛谷

    若说代码 那真的是很水 但是 思想却有点意思 这道题是洛谷博弈论专题的第一道入门题, 然而刚开始我是不会做的, 毕竟是道入门题, 我博弈论还没入门呢. 这道题的做法就是: 如果m为偶数, 那么先手赢( ...

  7. 洛谷P4495 奇怪的背包 [HAOI2018] 数论

    正解:数论+dp 解题报告: 传送门! 首先看到这题,跳无数次,自然而然可以想到之前考过好几次了的一个结论——如果只考虑无限放置i,它可以且仅可以跳到gcd(p,v[i]) 举一反三一下,如果有多个i ...

  8. Codeforces Round #425 (Div. 2) Problem C Strange Radiation (Codeforces 832C) - 二分答案 - 数论

    n people are standing on a coordinate axis in points with positive integer coordinates strictly less ...

  9. bzoj5019: [Snoi2017]遗失的答案

    Description 小皮球在计算出答案之后,买了一堆皮肤,他心里很开心,但是一不小心,就忘记自己买了哪些皮肤了.==|||万 幸的是,他还记得他把所有皮肤按照1-N来编号,他买来的那些皮肤的编号( ...

随机推荐

  1. laravel 踩坑 env,config

    正常情况: env 方法 可以获取 .env 文件的值 config 可以获取 config 文件夹下 指定配置的值 非正常情况: 当我们执行了 php artisan config:cache 之后 ...

  2. 从零学React Native之03页面导航

    之前我们介绍了RN相关的知识: 是时候了解React Native了 从零学React Native之01创建第一个程序 从零学React Native之02状态机 本篇主要介绍页面导航 上一篇文章给 ...

  3. 20-2 orm分组和聚合以及在项目中执行的一些方法

    一  orm分组和聚合 参考:https://www.cnblogs.com/liwenzhou/p/8660826.html 1 表结构: # 第一张表 class Employee1(models ...

  4. sspanel 常用审计规则

    规则 禁用 BT 防止版权争议 BitTorrent protocol 数据包明文匹配 禁止 百度高精度定位 防止IP与客户端地理位置被记录 (api|ps|sv|offnavi|newvector| ...

  5. mysql数据库之存储引擎

    mysql存储引擎概述 什么是存储引擎?                                                               MYSQL中的数据用各不相同的技术 ...

  6. Python--day24--单继承关键字super

    super().  调用父类方法:(super不仅可以在一个类的内部使用,还可以在一个类的外部使用)

  7. jstack简介

    jstack:Java进程中线程的堆栈信息跟踪工具 功能简介 jstack常用来打印Java进程/core文件/远程调试端口的Java线程堆栈跟踪信息,包含当前虚拟机中所有线程正在执行的方法堆栈信息的 ...

  8. H3C OSPF可选配置命令

  9. Html5 @media + css3 媒体查询

    css3 media媒体查询器用法总结   随着响应式设计模型的诞生,Web网站又要发生翻天腹地的改革浪潮,可能有些人会觉得在国内IE6用户居高不下的情况下,这些新的技术还不会广泛的蔓延下去,那你就错 ...

  10. HDU 1828“Picture”(线段树+扫描线求矩形周长并)

    传送门 •参考资料 [1]:算法总结:[线段树+扫描线]&矩形覆盖求面积/周长问题(HDU 1542/HDU 1828) •题意 给你 n 个矩形,求矩形并的周长: •题解1(两次扫描线) 周 ...