题面

给出一个\(n\)个数组成的数列\(a\),有\(t\)次询问,每次询问为一个\([l,r]\)的区间,求区间内每种数字出现次数的平方×数字的值 的和

思路:

直接上莫队咯 然后就T了

没学过莫队?!我也没办法

这道题的数据范围在\(2e5\)的级别,有人会问莫队肯定要炸啊 捏~

时限5000ms,那就可以乱搞了

但是!还是要加一些优化

如何优化?

1.对于算法本身的优化

由于莫队可以说是一个块状暴力的算法,就是把区间划分为\(\sqrt n\)块然后在块内暴力(到头还是暴力)

我们可以把要查询的区间当做点表示在平面直角坐标系上,RT:

就像这样把询问放在平面直角坐标系上,\(\large x\)轴为询问该区间的顺序,\(\large y\)轴表示该区间的右端点,如果我们忽略区间的\(L\)值的影响,不难看出,虽然我们已经把区间划分在一个块里了,但是还是有很多冗余的操作,如果要是这些冗余的操作少一点就好了,这当然可以啦!

我们可以让块内的区间按\(\large R\) 递增,这样能省很多时间,但是在区间过渡的时候,我们还是会做很多多余的操作,因为区间都是递增的,这样改变块的时候就可能有一个很大的落差,就掉了下去,可以自己想象一下

为了避免上述的现象,我们可以让区间像一个波浪一样,这样就很高效了,这样的划分方式叫做奇偶划分应该是这么叫的吧,还有一个是奇偶性剪枝

inline bool cmp(node a,node b){//代码是关键,讲了啥不重要(手动划线)
return (pos[a.l]==pos[b.l])?(pos[a.l]&1)?a.r<b.r:a.r>b.r : a.l<b.l;
}//千万不要写if,会T!

接着就是块的大小,同样影响速度,一般普通的块的大小应该是\(\large \sqrt n\),但是,根据某奆佬研究,大小为\(\large n^{0.54}\)时更快,Orz

2.对于程序本身优化,说人话就是卡卡常

比如:

加点register

非递归函数前加个inline

不用快读用fread

还有!乘法变加法……

然后就把最大时间卡到了622ms

啊哈哈哈哈哈

Code:

#include<bits/stdc++.h>
#define getchar() *(p++)//在快读基础上改一点就行了
#define Re register//卡常必备
#define ll long long
#define M 1000010
#define N 200010
using namespace std;
struct node{
int l,r,i;
}b[N];//sum是数的多少,pos表示在哪块
int a[N],pos[N],n,m,sum[M],l,r,block;
ll Ans[N],ans;
char bf[1<<25],*p;
int read(){
Re int s=0;
Re char c=getchar();
while(!isdigit(c))
c=getchar();
while(isdigit(c))
{
s=(s<<1)+(s<<3)+c-'0';
c=getchar();
}
return s;
}
inline bool cmp(node a,node b){//奇偶划分
return (pos[a.l]==pos[b.l])?(pos[a.l]&1)?a.r<b.r:a.r>b.r : a.l<b.l;
}//注意,这里不要写if语句,会T
inline void Add(Re ll x)
{
sum[x]++;//有些人写在前面,那样的话就应该是+1
ans+=(sum[x]+sum[x]-1)*x;//就是由原来的乘变成了加,手算一小部分也没有关系啦
}
inline void Del(Re ll x)
{
ans-=(sum[x]+sum[x]-1)*x;//这里和上面也是一样的
sum[x]--;//为什么我感觉上面-1会更慢呢~
}
int main()
{
Re int i;
bf[fread(bf,1,1<<25,stdin)]='\0';p=bf;//fread大法
n=read();m=read();block=pow(n,0.54);//神奇的块的大小
for(i=1;i<=n;i++)
a[i]=read(),pos[i]=i/block;
for(i=1;i<=m;i++)
b[i].l=read(),b[i].r=read(),b[i].i=i;
sort(b+1,b+1+m,cmp);l=1;
for(i=1;i<=m;i++)//然后上莫队
{
while(r<b[i].r)
Add(a[++r]);
while(r>b[i].r)
Del(a[r--]);
while(l<b[i].l)
Del(a[l++]);
while(l>b[i].l)
Add(a[--l]);
Ans[b[i].i]=ans;
}
for(i=1;i<=m;i++)
printf("%lld\n",Ans[i]);
return 0;
}

再说一遍

最后注意,sort的时候,如果数组本来就有序了,sort会很慢,所以千万不要在里面加if了,容易T

「CF86D」Powerful array 解题报告的更多相关文章

  1. 「FJOI2016」神秘数 解题报告

    「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就 ...

  2. 「ZJOI2016」大森林 解题报告

    「ZJOI2016」大森林 神仙题... 很显然线段树搞不了 考虑离线操作 我们只搞一颗树,从位置1一直往后移动,然后维护它的形态试试 显然操作0,1都可以拆成差分的形式,就是加入和删除 因为保证了操 ...

  3. 「SCOI2016」背单词 解题报告

    「SCOI2016」背单词 出题人sb 题意有毒 大概是告诉你,你给一堆n个单词安排顺序 如果当前位置为x 当前单词的后缀没在这堆单词出现过,代价x 这里的后缀是原意,但不算自己,举个例子比如abc的 ...

  4. 「NOI2015」寿司晚宴 解题报告

    「NOI2015」寿司晚宴 这个题思路其实挺自然的,但是我太傻了...最开始想着钦定一些,结果发现假了.. 首先一个比较套路的事情是状压前8个质数,后面的只会在一个数出现一次的再想办法就好. 然后发现 ...

  5. 「SCOI2015」国旗计划 解题报告

    「SCOI2015」国旗计划 蛮有趣的一个题 注意到区间互不交错,那么如果我们已经钦定了一个区间,它选择的下一个区间是唯一的,就是和它有交且右端点在最右边的,这个可以单调队列预处理一下 然后往后面跳拿 ...

  6. 「JLOI2015」骗我呢 解题报告?

    「JLOI2015」骗我呢 这什么神仙题 \[\color{purple}{Link}\] 可以学到的东西 对越过直线的东西翻折进行容斥 之类的..吧? Code: #include <cstd ...

  7. 「JLOI2015」城池攻占 解题报告

    「JLOI2015」城池攻占 注意到任意两个人的战斗力相对大小的不变的 可以离线的把所有人赛到初始点的堆里 然后做启发式合并就可以了 Code: #include <cstdio> #in ...

  8. 「JLOI2015」管道连接 解题报告

    「JLOI2015」管道连接 先按照斯坦纳树求一个 然后合并成斯坦纳森林 直接枚举树的集合再dp一下就好了 Code: #include <cstdio> #include <cct ...

  9. 「JLOI2015」战争调度 解题报告

    「JLOI2015」战争调度 感觉一到晚上大脑就宕机了... 题目本身不难,就算没接触过想想也是可以想到的 这个满二叉树的深度很浅啊,每个点只会和它的\(n-1\)个祖先匹配啊 于是可以暴力枚举祖先链 ...

随机推荐

  1. js this详解

    This的定义: 它代表函数运行时,自动生成的一个内部对象,只能在函数内部使用. this的指向在函数定义的时候是确定不了的,只有函数执行的时候才能确定this到底指向谁,实际上this的最终指向的是 ...

  2. Uniapp使用iconfont

    看别人的项目有各种各样的图标既好看占用内存还小 后来才知道原来有icon图标这个东西,原谅我真的一直处于混沌的状态. 刚好最近项目使用了uniapp框架,引入iconfont的方式和之前有些不太一样 ...

  3. windows 关闭端口被占用脚本

    cmd 关闭进程java taskkill /F /IM java.exe taskkill /f /im java.exe 如何用dat批处理文件关闭某端口对应程序-Windows自动化命令 如何用 ...

  4. html选择题

    1.下面关于css样式和html样式的不同之处说法正确的是(A) A.html样式只影响应用它的文本和使用所选html样式创建的文本 B.css样式只可以设置文字字体样式        不仅仅能够设置 ...

  5. jq操作class类

    https://www.cnblogs.com/sandraryan/ 鼠标移入移除切换样式 方法一: css .menu { color: green; } .active { color: red ...

  6. H5 拖拽元素

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. Python--day38--事件

    1,事件的方法: #set和clear #分别用来修改一个事件的状态 True或者False#is_set用来查看一个事件的状态#wait 是依据事件的状态来决定自己是否阻塞# False最 True ...

  8. SpringSide 3 中的安全框架

    在SpringSide 3的官方文档中,说安全框架使用的是Spring Security 2.0.乍一看,吓了我一跳,以为Acegi这么快就被淘汰了呢.上搜索引擎一搜,发现原来Spring Secur ...

  9. P1079 好朋友

    题目描述 小可可和所有其他同学的手腕上都戴有一个射频识别序列号码牌,这样老师就可以方便的计算出他们的人数.很多同学都有一个"好朋友" .如果 A 的序列号的约数之和恰好等于B 的序 ...

  10. Linux内核接口特定的类型

    内核中一些通常使用的数据类型有它们自己的 typedef 语句, 因此阻止了任何移植性问 题. 例如, 一个进程标识符 ( pid ) 常常是 pid_t 而不是 int. 使用 pid_t 屏蔽了任 ...