B. The least round way

题目连接:

http://www.codeforces.com/contest/2/problem/B

Description

There is a square matrix n × n, consisting of non-negative integer numbers. You should find such a way on it that

starts in the upper left cell of the matrix;

each following cell is to the right or down from the current cell;

the way ends in the bottom right cell.

Moreover, if we multiply together all the numbers along the way, the result should be the least "round". In other words, it should end in the least possible number of zeros.

Input

The first line contains an integer number n (2 ≤ n ≤ 1000), n is the size of the matrix. Then follow n lines containing the matrix elements (non-negative integer numbers not exceeding 109).

Output

In the first line print the least number of trailing zeros. In the second line print the correspondent way itself.

Sample Input

3

1 2 3

4 5 6

7 8 9

Sample Output

0

DDRR

Hint

题意

给你一个n*n的矩阵

然后这个矩阵你需要从左上角走到右下角

只能走右或者向下。

你要使得你经过的数,乘积起来后面的0的个数最少。

题解:

dp[i][j][0]表示到i,j位置,2的因子最少多少个

dp[i][j][1]表示到i,j位置,5的因子最少多少个

然后答案显然就是min(dp[n][n][0],dp[n][n][1])了,然后倒着dfs输出答案就好了。

但是这儿有一个hack点,就是如果有一个位置是0的话,答案就最多为1了,这个是显然的嘛。

然后就没了。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1100;
const int inf = 1e9;
int dp[maxn][maxn][2];
int cnt[maxn][maxn][2];
int g[maxn][maxn][2];
int n,a[maxn][maxn];
void solve(int x,int y,int now)
{
if(x==1&&y==1)return;
if(g[x][y][now]==1)solve(x-1,y,now),printf("D");
else solve(x,y-1,now),printf("R");
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&a[i][j]);
int flagx=0,flagy=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(a[i][j]==0)
{
flagx=i,flagy=j;
break;
}
int pre = a[i][j];
while(a[i][j]%2==0)cnt[i][j][0]++,a[i][j]/=2;
while(a[i][j]%5==0)cnt[i][j][1]++,a[i][j]/=5;
}
}
memset(dp,0x3f,sizeof(dp));
memset(g,0,sizeof(g));
dp[1][1][0]=cnt[1][1][0],dp[1][1][1]=cnt[1][1][1];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==1&&j==1)continue;
for(int k=0;k<2;k++)
{
dp[i][j][k]=cnt[i][j][k]+min(dp[i-1][j][k],dp[i][j-1][k]);
if(dp[i-1][j][k]<dp[i][j-1][k])g[i][j][k]=1;
}
}
}
int ans = min(dp[n][n][0],dp[n][n][1]);
int st;
if(dp[n][n][0]<dp[n][n][1])st=0;
else st=1;
if(ans==0)puts("0");
else if(flagx&&flagy)
{
puts("1");
int nowx=1,nowy=1;
while(nowx<flagx)nowx++,printf("D");
while(nowy<flagy)nowy++,printf("R");
while(nowx<n)nowx++,printf("D");
while(nowy<n)nowy++,printf("R");
return 0;
}
else printf("%d\n",ans);
solve(n,n,st);
}

Codeforces Beta Round #2 B. The least round way dp的更多相关文章

  1. Codeforces Beta Round #80 (Div. 2 Only)【ABCD】

    Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...

  2. Codeforces Beta Round #62 题解【ABCD】

    Codeforces Beta Round #62 A Irrational problem 题意 f(x) = x mod p1 mod p2 mod p3 mod p4 问你[a,b]中有多少个数 ...

  3. Codeforces Beta Round #83 (Div. 1 Only)题解【ABCD】

    Codeforces Beta Round #83 (Div. 1 Only) A. Dorm Water Supply 题意 给你一个n点m边的图,保证每个点的入度和出度最多为1 如果这个点入度为0 ...

  4. Codeforces Beta Round #13 C. Sequence (DP)

    题目大意 给一个数列,长度不超过 5000,每次可以将其中的一个数加 1 或者减 1,问,最少需要多少次操作,才能使得这个数列单调不降 数列中每个数为 -109-109 中的一个数 做法分析 先这样考 ...

  5. Codeforces Beta Round #79 (Div. 2 Only)

    Codeforces Beta Round #79 (Div. 2 Only) http://codeforces.com/contest/102 A #include<bits/stdc++. ...

  6. Codeforces Beta Round #77 (Div. 2 Only)

    Codeforces Beta Round #77 (Div. 2 Only) http://codeforces.com/contest/96 A #include<bits/stdc++.h ...

  7. Codeforces Beta Round #76 (Div. 2 Only)

    Codeforces Beta Round #76 (Div. 2 Only) http://codeforces.com/contest/94 A #include<bits/stdc++.h ...

  8. Codeforces Beta Round #75 (Div. 2 Only)

    Codeforces Beta Round #75 (Div. 2 Only) http://codeforces.com/contest/92 A #include<iostream> ...

  9. Codeforces Beta Round #74 (Div. 2 Only)

    Codeforces Beta Round #74 (Div. 2 Only) http://codeforces.com/contest/90 A #include<iostream> ...

  10. Codeforces Beta Round #73 (Div. 2 Only)

    Codeforces Beta Round #73 (Div. 2 Only) http://codeforces.com/contest/88 A 模拟 #include<bits/stdc+ ...

随机推荐

  1. CMD命令行下载文件

    远程执行sct的另一种姿势 cscript /b C:\Windows\System32\Printing_Admin_Scripts\zh-CN\pubprn.vbs 127.0.0.1 scrip ...

  2. 日常开发技巧:使用notify-send发送通知

    背景 在终端执行一些需要较长时间的命令时,会切换到别的界面.但为了知道是否执行完成,需要时不时地切换过去看一眼.很麻烦. 解决方式 为了减少这种麻烦,可以使用notify-send,发送桌面通知.no ...

  3. dump_stack 实现分析【转】

    转自:http://kernel.meizu.com/2017/03/18-40-19-dump_stack.html 1 简介 说起 dump_stack() ,相信从事 Linux 内核或者驱动相 ...

  4. 自动化测试===Httprunner测试框架介绍

    项目地址: https://github.com/HttpRunner/HttpRunner 中文手册: http://cn.httprunner.org/ 首先是环境搭建: pip install ...

  5. linux信号Linux下Signal信号太详细了,终于找到了

    linux信号Linux下Signal信号太详细了,终于找到了 http://www.cppblog.com/sleepwom/archive/2010/12/27/137564.html

  6. mysql连接池优化笔记

    中间件mycat是一个高性能的分表分库读写分离的中间件,但配置不好的情况会出现很多性能问题. 1.mycat-web的监控的准确性有问题,1.6-RELEASE  ,1.0-SNAPSHOT (web ...

  7. Github精选 – 适合移动端的HTML5 Datepicker

     2016-01-12 (updated: 2017-01-07) 15731 通过 HTML5 的 <input> 新属性可以简单方便地调用手机的原生 Datepicker,但功能较弱, ...

  8. jQuery实现,动态自动定位弹窗。JS分页,Ajax请求

    工作中碰到一个问题,一个页面中碰到多个地方需要弹窗数据. 网上找了一圈,没有找到合适的,所以自己写了一个. 兼容IE7+,chrome.其它未测试. 需求:点击任意的输入框(也可其它元素,代码中有注释 ...

  9. ZK客户端

    说明:本文为读<从Paxos到Zookeeper 分布式一致性原理与实践>读书笔记 shell操作 Java客户端 原始API pom文件: <dependency> < ...

  10. 按书上的例子,写了个长的go代码

    用于实现快速排序和冒泡排序的东东. 包括了蛮多东西的实现,输入输出,字符串处理等.... bubblesort.go package bubblesort func BubbleSort(values ...