F. Xors on Segments

题目连接:

http://www.codeforces.com/contest/620/problem/F

Description

You are given an array with n integers ai and m queries. Each query is described by two integers (lj, rj).

Let's define the function . The function is defined for only u ≤ v.

For each query print the maximal value of the function f(ax, ay) over all lj ≤ x, y ≤ rj,  ax ≤ ay.

Input

The first line contains two integers n, m (1 ≤ n ≤ 5·104,  1 ≤ m ≤ 5·103) — the size of the array and the number of the queries.

The second line contains n integers ai (1 ≤ ai ≤ 106) — the elements of the array a.

Each of the next m lines contains two integers lj, rj (1 ≤ lj ≤ rj ≤ n) – the parameters of the j-th query.

Output

For each query print the value aj on a separate line — the maximal value of the function f(ax, ay) over all lj ≤ x, y ≤ rj,  ax ≤ ay.

Sample Input

6 3

1 2 3 4 5 6

1 6

2 5

3 4

Sample Output

7

7

7

Hint

题意

题目中定义了f(i,j) = i(i+1)(i+2)...j

给你n个数,然后m次询问

每次问你l,r区间内,f(a[i],a[j])最大是多少,l<=i,j<=r

题解:

正解的话是莫队+字典树

复杂度是(n+m)lognsqrt(n)

但是这道题也有(n^2+nm)的算法,两个算法的复杂度差距不是很大

并且第二种好写的多……

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+5;
int f[maxn];
int a[maxn];
int G[maxn];
int l[maxn],r[maxn],ans[maxn];
int main()
{
for(int i=1;i<maxn;i++)
f[i]=f[i-1]^i;
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=m;i++)
scanf("%d%d",&l[i],&r[i]);
for(int i=1;i<=n;i++)
{
int mx = 0;
for(int j=i;j<=n;j++)
{
int cnt = f[a[j]]^f[a[i]];
if(a[j]>a[i])
cnt^=a[i];
else
cnt^=a[j];
mx = max(cnt,mx);
G[j]=mx;
}
for(int j=1;j<=m;j++)
if(l[j]<=i&&i<=r[j])
ans[j]=max(ans[j],G[r[j]]);
}
for(int i=1;i<=m;i++)
printf("%d\n",ans[i]);
}

Educational Codeforces Round 6 F. Xors on Segments 暴力的更多相关文章

  1. Educational Codeforces Round 40 F. Runner's Problem

    Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...

  2. Educational Codeforces Round 61 F 思维 + 区间dp

    https://codeforces.com/contest/1132/problem/F 思维 + 区间dp 题意 给一个长度为n的字符串(<=500),每次选择消去字符,连续相同的字符可以同 ...

  3. Educational Codeforces Round 51 F. The Shortest Statement(lca+最短路)

    https://codeforces.com/contest/1051/problem/F 题意 给一个带权联通无向图,n个点,m条边,q个询问,询问两点之间的最短路 其中 m-n<=20,1& ...

  4. Educational Codeforces Round 12 F. Four Divisors 求小于x的素数个数(待解决)

    F. Four Divisors 题目连接: http://www.codeforces.com/contest/665/problem/F Description If an integer a i ...

  5. Educational Codeforces Round 26 F. Prefix Sums 二分,组合数

    题目链接:http://codeforces.com/contest/837/problem/F 题意:如题QAQ 解法:参考题解博客:http://www.cnblogs.com/FxxL/p/72 ...

  6. Educational Codeforces Round 9 F. Magic Matrix 最小生成树

    F. Magic Matrix 题目连接: http://www.codeforces.com/contest/632/problem/F Description You're given a mat ...

  7. Educational Codeforces Round 7 F. The Sum of the k-th Powers 拉格朗日插值法

    F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description Ther ...

  8. Educational Codeforces Round 8 F. Bear and Fair Set 最大流

    F. Bear and Fair Set 题目连接: http://www.codeforces.com/contest/628/problem/F Description Limak is a gr ...

  9. Educational Codeforces Round 14 - F (codeforces 691F)

    题目链接:http://codeforces.com/problemset/problem/691/F 题目大意:给定n个数,再给m个询问,每个询问给一个p,求n个数中有多少对数的乘积≥p 数据范围: ...

随机推荐

  1. C++之参数总结

    函数的形参为函数提供了已命名的局部存储空间,它是在函数的形参表中定义的,并由调用函数时传递给函数的实参初始化,而形参的 初始化与变量的初始化一样,如果形参具有非引用类型,则复制实参的值,如果形参为引用 ...

  2. mongodb 学习笔记--- 基础知识

    1.mongodb的安装 (1) mac使用brew 安装就好 brew install mongodb (2) mkdir /data/db 作为mongodb默认的数据目录 并 sudo chow ...

  3. [New learn]@class和#import的区别使用

    1.简介 我们在查看代码的时候经常会发现有些地方使用@class而有些地方使用#import,他们到底有什么区别呢, 本文意图去归纳和总结这两种类引用的是的处理方法和规则. 2.分析 此小节会通过一些 ...

  4. StringBuilder类的作用,以及与String类的相互转换

    # 转载请留言联系 先看一段String类的字符串拼接的代码. String s = "hello" 会在常量池开辟一个内存空间来存储”hello". s += &quo ...

  5. django 上传图片、使用PIL制作缩略图并保存到sea的storage

    上传图片解析: SAE的设置指引如下: 处理用户上传文件 在setttings.py中添加以下配置. # 修改上传时文件在内存中可以存放的最大size为10m FILE_UPLOAD_MAX_MEMO ...

  6. [PAT] 1143 Lowest Common Ancestor(30 分)

    1143 Lowest Common Ancestor(30 分)The lowest common ancestor (LCA) of two nodes U and V in a tree is ...

  7. highcharts 折线,饼状,条状综合图

    完整代码如下: <head> <meta http-equiv="Content-Type" content="text/html; charset=u ...

  8. OpenCL学习笔记(一):摩尔定律,异构计算与OpenCL初印象

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld.  技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 关于摩尔定律: 摩尔定律19 ...

  9. JAVA版数据库主键ID生成器

    import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public clas ...

  10. 使用dpkg命令卸载已经安装的软件包

    如何在Ubuntu中使用dpkg命令卸载软件 http://jingyan.baidu.com/article/f54ae2fc2724a71e92b849c4.html sudo dpkg -i x ...