题目链接:http://poj.org/problem?id=2631

Description

Building and maintaining roads among communities in the far North is an expensive business. With this in mind, the roads are build such that there is only one route from a village to a village that does not pass through some other village twice. 
Given is an area in the far North comprising a number of villages and roads among them such that any village can be reached by road from any other village. Your job is to find the road distance between the two most remote villages in the area.

The area has up to 10,000 villages connected by road segments. The villages are numbered from 1.

Input

Input to the problem is a sequence of lines, each containing three positive integers: the number of a village, the number of a different village, and the length of the road segment connecting the villages in kilometers. All road segments are two-way.

Output

You are to output a single integer: the road distance between the two most remote villages in the area.
 
题目大意:给你一棵树,求树上最远的两点距离为多少。(题目描述比较奇葩,你可以认为点数等于边数+1,所有运算不会超过2^31-1)
思路:从任意一点开始,找到离这个点最远的点x。再从x开始做单源最短路,离x最远的点和x就是这棵树的最远点对。(当然基于树的分治也是可以做的)
证明(参考DISCUSS):
设最长链是MN->已知[1]
设由A开始DFS得到最长路为AB->已知[2]
结论[1] MN与AB有公共点.否则MN<AM+AN<=AM+AB=BM 与已知[1]矛盾
结论[2] B是最长链的一个端点.否则由结论[1] 设K是AB上距B最近且在MN上的点 则MN=MK+KN=MK+AN-AK<=MK+AB-AK=MK+BK=BM 当取等号时MB与MN等长 符合结论[2] 否则与已知[1]矛盾 [这里假定了A不在NK上.若A在NK上 只须将上面式子中MN交换位置即可 不影响结论]
结论[3] 从B开始DFS得到的最长路径是一条最长链.由结论[2].B是最长链的一端
至此证毕

代码(0MS):

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std; const int MAXN = ;
const int MAXE = ; int dis[MAXN], head[MAXN];
int to[MAXE], next[MAXE], cost[MAXE];
int n, ecnt; void init() {
memset(head, -, sizeof(head));
ecnt = ;
} void add_edge(int u, int v, int c) {
to[ecnt] = v; cost[ecnt] = c; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; cost[ecnt] = c; next[ecnt] = head[v]; head[v] = ecnt++;
} int bfs(int st) {
memset(dis, 0x3f, sizeof(dis));
queue<int> que; que.push(st);
dis[st] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
for(int p = head[u]; ~p; p = next[p]) {
int &v = to[p];
if(dis[v] > dis[u] + cost[p]) {
dis[v] = dis[u] + cost[p];
que.push(v);
}
}
}
int ed = st;
for(int i = ; i <= n; ++i)
if(dis[i] > dis[ed]) ed = i;
return ed;
} int main() {
init();
n = ;
int u, v, c;
while(scanf("%d%d%d", &u, &v, &c) != EOF) {
add_edge(u, v, c);
++n;
}
u = bfs();
v = bfs(u);
printf("%d\n", dis[v]);
}

————————————————————————————————时间的分割线————————————————————————————————————————————————

后记(2014-7-26):

当然这题还可以树DP,之前觉得麻烦用了上面的解法。现在有一个比较高大上的写法,边权是负数的时候也适用(据说上面的做法边权有负数就没用了,我懒得验证了有兴趣去验证一下吧……)。

思路很简单,树的直径必然是树上某一个点开始往下的最长链和次长链之和。而实现的时候只要保留最长链的大小就可以了,比较简单不讲了看代码就好。

代码(16MS):

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std; const int MAXV = ;
const int MAXE = ; int head[MAXV];
int to[MAXE], next[MAXE], cost[MAXE];
int n, ecnt; void init() {
memset(head, -, sizeof(head));
ecnt = ;
} void add_edge(int u, int v, int c) {
to[ecnt] = v; cost[ecnt] = c; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; cost[ecnt] = c; next[ecnt] = head[v]; head[v] = ecnt++;
} int dfs(int u, int f, int &ans) {
int maxdep = ;
for(int p = head[u]; ~p; p = next[p]) {
int &v = to[p];
if(v == f) continue;
int tmp = dfs(v, u, ans) + cost[p];
ans = max(ans, maxdep + tmp);
maxdep = max(tmp, maxdep);
}
return maxdep;
} int main() {
init();
n = ;
int u, v, c;
while(scanf("%d%d%d", &u, &v, &c) != EOF) {
add_edge(u, v, c);
++n;
}
int ans = ;
dfs(, , ans);
printf("%d\n", ans);
}

POJ 2631 Roads in the North(求树的直径,两次遍历 or 树DP)的更多相关文章

  1. POJ 2631 Roads in the North(树的直径)

    POJ 2631 Roads in the North(树的直径) http://poj.org/problem? id=2631 题意: 有一个树结构, 给你树的全部边(u,v,cost), 表示u ...

  2. poj 2631 Roads in the North

    题目连接 http://poj.org/problem?id=2631 Roads in the North Description Building and maintaining roads am ...

  3. poj 2631 Roads in the North (自由树的直径)

    Roads in the North Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4513   Accepted: 215 ...

  4. poj 2631 Roads in the North【树的直径裸题】

    Roads in the North Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2359   Accepted: 115 ...

  5. POJ 2631 Roads in the North (模板题)(树的直径)

    <题目链接> 题目大意:求一颗带权树上任意两点的最远路径长度. 解题分析: 裸的树的直径,可由树形DP和DFS.BFS求解,下面介绍的是BFS解法. 在树上跑两遍BFS即可,第一遍BFS以 ...

  6. POJ 2631 Roads in the North (树的直径)

    题意: 给定一棵树, 求树的直径. 分析: 两种方法: 1.两次bfs, 第一次求出最远的点, 第二次求该点的最远距离就是直径. 2.同hdu2196的第一次dfs, 求出每个节点到子树的最长距离和次 ...

  7. POJ 2631 Roads in the North (求树的直径)

    Description Building and maintaining roads among communities in the far North is an expensive busine ...

  8. 题解报告:poj 2631 Roads in the North(最长链)

    Description Building and maintaining roads among communities in the far North is an expensive busine ...

  9. POJ [P2631] Roads in the North

    树的直径 树的直径求法: 任取一点u,找到树上距u最远的点s 找到树上距s点最远的点t,s->t的距离即为所求 #include <iostream> #include <cs ...

随机推荐

  1. Vue--- vue-cli 脚手架 安装 -reeber

    vue-cli 脚手架 安装   一. node安装 1)如果不确定自己是否安装了node,可以在命令行工具内执行: node -v  (检查一下 版本): 2)如果 执行结果显示: xx 不是内部命 ...

  2. C++读取字符串数据的两种方式

    C++读取字符串数据的两种方式 对于同样的样例输入: ladder came tape soon leader acme RIDE lone Dreis peat ScAlE orb eye Ride ...

  3. Redis的数据类型以及各类型的操作

    讲完安装和配置,接下来就是所有数据库的重头戏,数据结构和常用操作的增删改查了 redis是key-value的数据结构,每条数据都是⼀个键值对 键的类型是字符串 注意:键不能重复 值的类型分为五种: ...

  4. 百度地图定位JSP代码

    附:百度地图API:http://lbsyun.baidu.com/cms/jsapi/reference/jsapi_reference.html#a1b0?qq-pf-to=pcqq.c2c &l ...

  5. JS 匿名函数或自执行函数总结

    JS引擎在遇到function关键字时做如下两种处理: 1.当语句是以function关键字开头:此时的JS语句解释为函数声明,因此function关键字后面必须要跟函数名字,如果写成匿名函数,则会报 ...

  6. ElasticSearch : APT-GET安装方式

    Ubuntu下安装ES 新建非ROOT管理员用户 安装和配置JDK 打开下面的地址 https://www.elastic.co/guide/en/elasticsearch/reference/cu ...

  7. PHP Mysql字符集utf8mb4支持Emoji表情

    项目开发中经常会遇到用户在评论或者发表文章的时候会打一些表情在里面,如果我们在开发中不去做一些处理的话,表情会出不来的,甚至是报错,下面简单介绍处理方式.原文地址:小时刻个人博客:http://sma ...

  8. php 计算两个文件的相对路径

    <?php /** * 计算两个文件的相对路径 */ function relative_path($path1, $path2) { $arr1 = explode('/', dirname( ...

  9. day 15 装饰器

    装饰器(重点,难点) 开闭原则:             对功能的扩展开放            对代码的修改是封闭的 在目标函数前和后插入一段新的代码.不改变原来的代码 通用装饰器写法: # 存在的 ...

  10. centos7安装mysql5.7.18笔记

    重装了一下系统,装了centos7,但是centos7下默认没有安装mysql,有MariaDB数据库,网上的解释是: “MariaDB数据库管理系统是MySQL的一个分支,主要由开源社区在维护,采用 ...