魔板

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2874    Accepted Submission(s): 635

Problem Description

魔方风靡全球之后不久,Rubik先生发明了它的简化版——魔板。魔板由8个同样大小的方块组成,每个方块颜色均不相同,可用数字1-8分别表示。任一时
刻魔板的状态可用方块的颜色序列表示:从魔板的左上角开始,按顺时针方向依次写下各方块的颜色代号,所得到的数字序列即可表示此时魔板的状态。例如,序列
(1,2,3,4,5,6,7,8)表示魔板状态为:

1 2 3 4
8 7 6 5

对于魔板,可施加三种不同的操作,具体操作方法如下:

A: 上下两行互换,如上图可变换为状态87654321
B: 每行同时循环右移一格,如上图可变换为41236785
C: 中间4个方块顺时针旋转一格,如上图可变换为17245368

给你魔板的初始状态与目标状态,请给出由初态到目态变换数最少的变换步骤,若有多种变换方案则取字典序最小的那种。

 
Input
每组测试数据包括两行,分别代表魔板的初态与目态。
 
Output
对每组测试数据输出满足题意的变换步骤。
 
Sample Input
12345678
17245368
12345678
82754631
 
Sample Output
C
AC
 
Author
LL
 
Source
 
 
题解:康托展开没什么玄乎的,就相当于HASH的功能,主要是映射很牛,解法,映射:
这里已经解释的很清楚了,我就直接引用了.

列如:位置:12345678                12345678

起初: 63728145       变      12345678

终点: 86372541       成       51234876

解释一下:初:6在第1个位,那么在终点中找6用1代替,3在第2个位,在终点中找3用2代替,依次类推。

一开始我们就先按 12345678 这样的顺序建立了一棵像树一样的,如果直接从初态不进行转变的话,那么我们的结果可能有很多的走法,有可能是先走A或B都可以到目标,有多条路时,但是先走了B的路径,必须要输出小的也就是从A开始的那条路,那怎么办呢,就可以用转化的思想了,把初始状态变成12345678,这样的话,我们一开始就是从这样的顺序算出来的!!所以必须先进行转换,在从目标往上找并记下路径,一直找到最终父节点:12345678.

这题映射之后直接一次BFS就行了...非常NB。。

///X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! a[i]表示第i个元素的逆序数
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <string>
#include <map>
using namespace std;
const int N = ;
int a[],b[];
char str[],str1[];
bool vis[N];
int fab[]={,,,,,,,};
struct Node
{
int val[];
int Hash;
};
struct Way{
char way; ///记录路径
int pre;
}node2[N];
int contor(Node s){
int x= ;
for(int i=;i>=;i--){
int cnt = ;
for(int j=i-;j>=;j--){
if(s.val[i]<s.val[j]) cnt++;
}
x+=cnt*fab[i-];
}
return x;
}
void A(Node &s){
swap(s.val[],s.val[]);
swap(s.val[],s.val[]);
swap(s.val[],s.val[]);
swap(s.val[],s.val[]);
}
void B(Node &s){
swap(s.val[],s.val[]),swap(s.val[],s.val[]),swap(s.val[],s.val[]);
swap(s.val[],s.val[]),swap(s.val[],s.val[]),swap(s.val[],s.val[]);
}
void C(Node &s){
swap(s.val[],s.val[]),swap(s.val[],s.val[]),swap(s.val[],s.val[]);
}
void bfs(Node s)
{
for(int i=;i<N;i++){
node2[i].pre = -;
}
memset(vis,false,sizeof(vis));
queue<Node> q;
node2[s.Hash].pre = -;
vis[s.Hash] = true;
q.push(s);
while(!q.empty()){
Node now = q.front();
q.pop();
Node next;
next = now;
A(next);
int k = contor(next);
if(!vis[k]){
vis[k] = true;
next.Hash = k;
node2[next.Hash].pre = now.Hash;
node2[next.Hash].way = 'A';
q.push(next);
}
next = now;
B(next);
k = contor(next);
if(!vis[k]){
vis[k] = true;
next.Hash = k;
node2[next.Hash].pre = now.Hash;
node2[next.Hash].way = 'B';
q.push(next);
}
next = now;
C(next);
k = contor(next);
if(!vis[k]){
vis[k] = true;
next.Hash = k;
node2[next.Hash].pre = now.Hash;
node2[next.Hash].way = 'C';
q.push(next);
}
}
}
struct Node3{
char c;
int idx;
}node3[];
void dfs(int x){
if(node2[x].pre==-) return;
dfs(node2[x].pre);
printf("%c",node2[x].way);
}
int main()
{
Node s;
for(int i=;i<=;i++){
s.val[i] = i;
}
s.Hash = contor(s);
bfs(s);
while(scanf("%s",str+)!=EOF)
{
scanf("%s",str1+);
for(int i=;i<=;i++){
node3[i].c = str[i];
node3[i].idx = i;
}
Node s;
for(int i=;i<=;i++){
for(int j=;j<=;j++){
if(str1[i]==node3[j].c){
s.val[i] = node3[j].idx;
break;
}
}
}
int x= contor(s);
dfs(x);
printf("\n");
}
}

hdu 1430(BFS+康托展开+映射+输出路径)的更多相关文章

  1. hdu 1430 (BFS 康托展开 或 map )

    第一眼看到这题就直接BFS爆搜,第一发爆了内存,傻逼了忘标记了,然后就改,咋标记呢. 然后想到用map函数,就8!个不同的排列,换成字符串用map标记.然后又交一发果断超时,伤心,最恨超时,还不如来个 ...

  2. hdu 5012 bfs 康托展开

    Dice Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  3. HDU_1043 Eight 【逆向BFS + 康托展开 】【A* + 康托展开 】

    一.题目 http://acm.hdu.edu.cn/showproblem.php?pid=1043 二.两种方法 该题很明显,是一个八数码的问题,就是9宫格,里面有一个空格,外加1~8的数字,任意 ...

  4. HDU - 1430 魔板 【BFS + 康托展开 + 哈希】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1430 思路 我刚开始 想到的 就是 康托展开 但是这个题目是 多组输入 即使用 康托展开 也是会T的 ...

  5. hdu.1430.魔板(bfs + 康托展开)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  6. HDU 1043 Eight(双向BFS+康托展开)

    http://acm.hdu.edu.cn/showproblem.php?pid=1043 题意:给出一个八数码,求出到达指定状态的路径. 思路:路径寻找问题.在这道题里用到的知识点挺多的.第一次用 ...

  7. 【HDU - 1043】Eight(反向bfs+康托展开)

    Eight Descriptions: 简单介绍一下八数码问题:在一个3×3的九宫格上,填有1~8八个数字,空余一个位置,例如下图: 1 2 3 4 5 6 7 8   在上图中,由于右下角位置是空的 ...

  8. POJ 1077 && HDU 1043 Eight A*算法,bfs,康托展开,hash 难度:3

    http://poj.org/problem?id=1077 http://acm.hdu.edu.cn/showproblem.php?pid=1043 X=a[n]*(n-1)!+a[n-1]*( ...

  9. hdu1430魔板(BFS+康托展开)

    做这题先看:http://blog.csdn.net/u010372095/article/details/9904497 Problem Description 在魔方风靡全球之后不久,Rubik先 ...

随机推荐

  1. Promise用法总结

    1. Promise的状态   Promise对象有三个状态: 1. 进行中(pending) 2. 成功(resolved) 3. 失败(rejected)   2. 生成一个Promise对象   ...

  2. win10下ndk编译arm可执行体

    编译参考文章 http://blog.csdn.net/john_1984/article/details/12622215 一.编写soLoader主文件 soLoader.c内容: #includ ...

  3. JavaScript闭包的特性

    先看一下代码: 01 <ul> 02     <li>1111</li> 03     <li>2222</li> 04     <l ...

  4. Linux环境下用Weblogic发布项目【二】 -- 配置Domain域

    配置注意事项: 修改密码时密码长度最少8位:在"<下一步>"后面为空即表示敲回车: 具体配置步骤如下: [root@GPS-App ~]# [root@GPS-App ...

  5. ACE反应器(Reactor)模式(4)

    转载于:http://www.cnblogs.com/TianFang/archive/2006/12/18/596012.html 定时器的实现 通过Reactor机制,还可以很容易的实现定时器的功 ...

  6. POJ3690:Constellations(二维哈希)

    Constellations Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 6822   Accepted: 1382 题目 ...

  7. HDU1384 差分约束

    Intervals Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  8. 深度学习---tensorflow简介

    个core可以有不同的代码路径.对于反向传播算法来说,基本计算就是矩阵向量乘法,对一个向量应用激活函数这样的向量化指令,而不像在传统的代码里会有很多if-else这样的逻辑判断,所以使用GPU加速非常 ...

  9. ZooKeeper管理员指南——部署与管理ZooKeeper

    1.部署 本章节主要讲述如何部署ZooKeeper,包括以下三部分的内容: 系统环境 集群模式的配置 单机模式的配置 系统环境和集群模式配置这两节内容大体讲述了如何部署一个能够用于生产环境的ZK集群. ...

  10. 理解JavaScript的prototype和__proto__

    首先,要明确几个点: 1.在JS里,万物皆对象. 方法(Function)是对象,方法的原型(Function.prototype)是对象.因此,它们都会具有对象共有的特点.即:对象具有属性__pro ...