[51nod1325]两棵树的问题
description
solution
点分治+最小割。
点分必选的重心,再在树上dfs判交,转化为最大权闭合子图。
可以做\(k\)棵树的情况。
code
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
#define RG register
#define il inline
using namespace std;
typedef long long ll;
typedef double dd;
const int N=205;
const int M=20;
const int mod=1e9+7;
const int inf=2147483647;
il ll read(){
RG ll d=0,w=1;char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')d=d*10+ch-48,ch=getchar();
return d*w;
}
int n,sum,rt,ans=-inf,val[N],ret;
int head[N],nxt[N<<1],to[N<<1],cnt;
il void add(int u,int v){
to[++cnt]=v;
nxt[cnt]=head[u];
head[u]=cnt;
}
int S,T,dhead[N],dnxt[N<<1],dto[N<<1],dval[N<<1],dcnt;
il void addedge(int u,int v,int w){
dto[++dcnt]=v;
dnxt[dcnt]=dhead[u];
dval[dcnt]=w;
dhead[u]=dcnt;
dto[++dcnt]=u;
dnxt[dcnt]=dhead[v];
dval[dcnt]=0;
dhead[v]=dcnt;
}
queue<int>Q;int dep[N],cur[N];
il bool bfs(){
for(RG int i=1;i<=T;i++)dep[i]=0;
while(!Q.empty())Q.pop();
dep[S]=1;Q.push(S);
while(!Q.empty()){
RG int u=Q.front();Q.pop();
for(RG int i=dhead[u];i;i=dnxt[i]){
RG int v=dto[i];
if(!dep[v]&&dval[i]){
dep[v]=dep[u]+1;
Q.push(v);
}
}
}
return dep[T];
}
int dfs(int u,int t,int power){
if(u==t)return power;
for(RG int &i=cur[u];i;i=dnxt[i]){
RG int v=dto[i];
if(dep[v]==dep[u]+1&&dval[i]){
RG int d=0;
if(d=dfs(v,t,min(power,dval[i]))){
dval[i]-=d;
dval[i^1]+=d;
return d;
}
}
}
return 0;
}
il int Dinic(){
RG int ret=0,d;
while(bfs()){
for(RG int i=1;i<=T;i++)cur[i]=dhead[i];
while(d=dfs(S,T,inf))ret+=d;
}
return ret;
}
int sz[N],w[N],cover[N],tot,pd[N];bool vis[N];
void dfscover(int u,int fa){
cover[u]=tot;pd[u]=dhead[u]=0;
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(v==fa||vis[v])continue;
dfscover(v,u);
}
}
void dfspd(int u,int fa){
RG int x=u>n?u-n:u;pd[x]++;
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(v==fa)continue;
RG int y=v>n?v-n:v;
if(cover[y]==tot)dfspd(v,u);
}
}
void dfsadd(int u,int fa){
RG int x=u>n?u-n:u;if(u<=n&&val[u]>0)ret+=val[u];
if(u<=n&&val[x])
val[x]>0?addedge(S,x,val[x]):addedge(x,T,-val[x]);
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(v==fa)continue;
RG int y=v>n?v-n:v;
if(cover[y]==tot&&pd[y]==2){
addedge(y,x,inf);
dfsadd(v,u);
}
}
}
il void calc(int u){
tot++;dcnt=1;ret=0;
S=sum+1;T=sum+2;dhead[S]=dhead[T]=0;
dfscover(u,0);
dfspd(u,0);dfspd(u+n,0);
//addedge(S,u,inf);??????
dfsadd(u,0);dfsadd(u+n,0);
ans=max(ans,ret-Dinic());
}
void getrt(int u,int fa){
sz[u]=1;w[u]=0;
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(v==fa||vis[v])continue;
getrt(v,u);sz[u]+=sz[v];
w[u]=max(w[u],sz[v]);
}
w[u]=max(w[u],sum-sz[u]);
if(w[rt]>w[u])rt=u;
}
void solve(int u){
calc(u);vis[u]=1;
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(vis[v])continue;
sum=sz[v];rt=0;
getrt(v,0);
solve(rt);
}
}
int main()
{
n=read();
for(RG int i=1;i<=n;i++)val[i]=read();
for(RG int i=1,u,v;i<n;i++){
u=read()+1;v=read()+1;add(u,v);add(v,u);
}
for(RG int i=1,u,v;i<n;i++){
u=read()+1;v=read()+1;add(u+n,v+n);add(v+n,u+n);
}
w[0]=sum=n;rt=0;
getrt(1,0);
solve(rt);
printf("%d\n",ans);
return 0;
}
Question
写最小割的时候,如果使用
addedge(S,u,inf);
来强制重心必选
就会\(WA\)在最后一个数据点
如果不写这句话就\(A\)掉了
如果有\(dalao\)知道是为什么的话欢迎在下方的评论给出建议
[51nod1325]两棵树的问题的更多相关文章
- LeetCode——Same Tree(判断两棵树是否相同)
问题: Given two binary trees, write a function to check if they are equal or not. Two binary trees are ...
- WPF的两棵树与绑定
原文:WPF的两棵树与绑定 先建立测试基类 public class VisualPanel : FrameworkElement { protected VisualCollection Chi ...
- element ui改写实现两棵树
使用element ui组件库实现一个table的两棵树的效果 效果如下,左边树自动展开一级,右边树默认显示楼层,然后可以一个个展开 代码如下 <el-table :data="rel ...
- 51 NOD 1325 两棵树的问题
Discription 对于 100% 的数据, N<=50. solution: 发现N比较小,所以我们可以花O(N^2)的代价枚举两颗树的联通块的LCA分别是哪个点,然后现在问题就变成了:选 ...
- 51nod 1325 两棵树的问题(最大权闭合子图)
首先如果点权全都为正,就可以直接选所有的点. 活在梦里.. 考虑枚举一个点\(i\),作为我们选择的集合中的一个点. 然后我们把另一个点\(j\)选入集合的时候必须把两棵树中\(i\)和\(j\)路径 ...
- HDU 6315.Naive Operations-线段树(两棵树合并)(区间单点更新、区间最值、区间求和)+思维 (2018 Multi-University Training Contest 2 1007)
6315.Naive Operations 题意很好理解,但是因为区间求和求的是向下取整的a[i]/b[i],所以直接分数更新区间是不对的,所以反过来直接当a[i]==b[i]的时候,线段树对应的位置 ...
- 判断两棵树是否相等 leecode
很简单 提交代码 https://oj.leetcode.com/problems/same-tree/ iven two binary trees, write a function to chec ...
- hdu-3015 Disharmony Trees---离散化+两个树状数组
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3015 题目大意: 有一些树,这些树的高度和位置给出.现在高度和位置都按从小到大排序,对应一个新的ra ...
- LeetCode——1305. 两棵二叉搜索树中的所有元素
给你 root1 和 root2 这两棵二叉搜索树. 请你返回一个列表,其中包含 两棵树 中的所有整数并按 升序 排序.. 示例 1: 输入:root1 = [2,1,4], root2 = [1,0 ...
随机推荐
- day 4 集合
1.集合 In [1]: a = (11,22,33,11,22,33) In [2]: a Out[2]: (11, 22, 33, 11, 22, 33) #元组 In [3]: b = [11, ...
- Git学习系列 (一)
打算花一个半月的时间学完Git.宏观上有更深的认识. 参考: Pro Git(中文版) 一.历史 本地版本控制系统 最原始的做法.复制整个项目目录的方式来保存不同的版本,或许还会改名加上备份时间以示区 ...
- Vue框架核心之数据劫持
本文来自网易云社区. 前瞻 当前前端界空前繁荣,各种框架横空出世,包括各类mvvm框架横行霸道,比如Angular.Regular.Vue.React等等,它们最大的优点就是可以实现数据绑定,再也不需 ...
- C# 调用webserver 出现:未能从程序集“jgd3jufm, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null”中加载类型
一般都是 用的动态调用webserver,然后这次用的是固定的 首先 最后 实例化改接口,然后直接传值调用
- android分析windowManager、window、viewGroup之间关系(二)
三.接上一节,分析windowManager中添加一个悬浮框的方式,首先看代码 WindowManager.LayoutParams params = new LayoutParams(); para ...
- Linux命令应用大词典-第28章 硬件管理
28.1 lscpu:显示有关CPU架构的信息 28.2 nproc:显示当前进程可用的CPU数目 28.3 chcpu:配置CPU
- Linux命令应用大词典-第24章 任务计划
24.1 contab:针对个人用户维护crontab文件
- 小球下落 (Dropping Balls,UVA 679)
题目描述: 题目思路: 1.直接用数组模拟二叉树下落过程 //超时 #include <iostream> #include <cstring> using namespace ...
- Matlab 图象操作函数讲解
h = imrect;pos = getPosition(h); 这个函数用来获取图象上特定区域的坐标,其中pos的返回值中有四个参数[xmin,ymin,width,height],特定区域的左上角 ...
- LeetCode 107 ——二叉树的层次遍历 II
1. 题目 2. 解答 与 LeetCode 102 --二叉树的层次遍历 类似,我们只需要将每一层的数据倒序输出即可. 定义一个存放树中数据的向量 data,一个存放树的每一层数据的向量 level ...