BZOJ2425:[HAOI2010]计数——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2425
https://www.luogu.org/problemnew/show/P2518
你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数。比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等。
现在给定一个数,问在这个数之前有多少个数。(注意这个数不会有前导0).
题意看了半天终于看懂了。
我们从高位到低位枚举比当前位小的数,然后对于剩下的元素放在后面全排列即可。
可重元素全排列=元素个数!/每个元素个数!的乘积。
防止爆ll可以将分子分母分解后约分再计算。
(貌似本质上是一道很暴力有点思维的水题,不是数位dp)
- #include<cstdio>
- #include<iostream>
- #include<vector>
- #include<queue>
- #include<cstring>
- #include<algorithm>
- using namespace std;
- typedef long long ll;
- const int N=;
- inline int read(){
- int X=,w=;char ch=;
- while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
- while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
- return w?-X:X;
- }
- char s[N];
- int n,sum,t[],p[N];
- ll ans=;
- int main(){
- cin>>s+;
- n=strlen(s+);
- for(int i=;i<=n;i++)t[s[i]-'']++,sum++;
- for(int i=;i<=n;i++){
- for(int j=;j<s[i]-'';j++){
- if(t[j]){
- memset(p,,sizeof(p));
- t[j]--;sum--;
- for(int k=;k<=;k++)
- for(int l=;l<=t[k];l++)
- p[l]++;
- ll tmp=;
- for(int k=;k<=sum;k++){
- tmp*=k;
- for(int l=;l<N;l++){
- while(p[l]&&tmp%l==){
- p[l]--;tmp/=l;
- }
- }
- }
- ans+=tmp;
- t[j]++;sum++;
- }
- }
- t[s[i]-'']--,sum--;
- }
- printf("%lld\n",ans);
- return ;
- }
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ2425:[HAOI2010]计数——题解的更多相关文章
- BZOJ2425: [HAOI2010]计数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2425 其实能够构成的数就是原数的排列(算前导0),然后组合计数一下就可以了. #include ...
- BZOJ2425 [HAOI2010]计数 【数位dp】
题目 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等. 现 ...
- bzoj千题计划178:bzoj2425: [HAOI2010]计数
http://www.lydsy.com/JudgeOnline/problem.php?id=2425 题意转化: 给定一个集合S,求S的全排列<给定排列 的排列个数 从最高位开始逐位枚举确定 ...
- BZOJ2425:[HAOI2010]计数(数位DP)
Description 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1 ...
- 【BZOJ2425】[HAOI2010]计数(组合数学)
[BZOJ2425][HAOI2010]计数(组合数学) 题面 BZOJ 洛谷 题解 很容易的一道题目. 统计一下每个数位出现的次数,然后从前往后依次枚举每一位,表示前面都已经卡在了范围内,从这一位开 ...
- bzoj 2425 [HAOI2010]计数 dp+组合计数
[HAOI2010]计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 451 Solved: 289[Submit][Status][Discus ...
- 洛谷P4071-[SDOI2016]排列计数 题解
SDOI2016-排列计数 发现很多题解都没有讲清楚这道题为什么要用逆元.递推公式怎么来的. 我,风雨兼程三十载,只为写出一篇好题解. 还是我来造福大家一下吧. 题目大意: 一个长度为 n 且 1~n ...
- 洛谷P1144最短路计数题解
最短路计数 此题还是寻找从1到i点总共有几个最短路且每条边的边长为1,对于这种寻找最短路的个数,我们可以反向搜索,即先用\(SPFA\)预处理出所有点的最短路,然后我们反向记忆化搜索,可以用\(sum ...
- [HAOI2010]计数(组合数学)(数位DP)
原题题意也就是给的数的全排列小于原数的个数. 我们可以很容易的想到重复元素的排列个数的公式. 但是我们发现阶乘的话很快就会爆long long啊(如果您想写高精请便) 之后我就尝试质因数分解....但 ...
随机推荐
- JAVA日志框架概述
日志用来记录应用的运行状态以及一些关键业务信息,其重要性不言而喻,通常我们借助于现有的日志框架完成日志输出.目前开源的日志框架很多,常见的有log4j.logback等,有时候我们还会 ...
- Qt PC 安卓 tcp传输文件
废话不多说,如题,上代码 qt PC端 头文件 //网络部分 #include <QTcpSocket> #include <QFile> #include <QFile ...
- Git 新建文件并提交
1.创建一个readme.txt. cd /home/cyp/learngit touch readme.txt vim readme.txt 编写内容, wq 保存推出 2.提交步骤 2.1 gi ...
- Linux命令应用大词典-第17章 软件包管理
17.1 rpm:RPM软件包管理器 17.2 rpmargs:处理RPM软件包 17.3 rpmbuild:构建RPM软件包 17.4 rpmdiff:比较两个软件包之间的不同 17.5 rpmel ...
- [CodeForce431C]k-tree
Quite recently a creative student Lesha had a lecture on trees. After the lecture Lesha was inspired ...
- HDU - 6440(费马小定理)
链接:HDU - 6440 题意:重新定义加法和乘法,使得 (m+n)^p = m^p + n^p 成立,p是素数.,且satisfied that there exists an integer q ...
- [Clr via C#读书笔记]Cp9参数
Cp9参数 可选参数和命名参数 参数设置了默认值(设置要从右到左,有默认值的参数必须放在没有默认值的参数的后面,默认值必须是常量),就可以使用可选参数和命名参数了.向方法传递实参的时候,编译器按照从左 ...
- [转载]CENTOS 6.0 iptables 开放端口80 3306 22端口
原文地址:6.0 iptables 开放端口80 3306 22端口">CENTOS 6.0 iptables 开放端口80 3306 22端口作者:云淡风轻 #/sbin/iptab ...
- vmware安装64位系统“此主机支持 Intel VT-x,但 Intel VT-x 处于禁用状态”的问题
虚拟机使用的是VMware Workstation,并且首次在虚拟机体验64 位系统.在新建好虚拟机,运行时候就出现了VMware Workstation 的提醒:此主机支持 Intel VT-x,但 ...
- protected、public、private
一.protected成员 1. 受保护的成员的可访问性 对于一个类的protected成员,①该类的用户(如类对象)不能访问它,②该类的派生类的成员(及其友元)可以访问它. 派生类的成员及其友元不能 ...