CVPR 2016 paper reading (6)
1. Neuroaesthetics in fashion: modeling the perception of fashionability, Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, Raquel Urtasun, in CVPR 2015.
Goal: learn and predict how fashionable a person looks on a photograph, and suggest subtle improvements that user could make to improve her/his appeal.
This paper proposes a Conditional Random Field model that jointly reasons about several fashionability factors such as the type of outfit (全套装备) and garments (衣服) the user is wearing, the type of the user, the photograph's setting (e.g., the scenery behind the user), and the fashionability score.
Importantly, the proposed model is able to give rich feed back to the user, conveying which garments or even scenery she/he should change in order to improve fashionability.
This paper collects a novel dataset that consists of 144,169 user posts from a clothing-oriented social website chictopia.com. In a post, a user publishes one to six photographs of her/himself wearing a new outfit. Generally each photograph shows a different angle of the user or zoons in on different garments. User sometimes also add a description of the outfit, and/or tags of the types and colors of the garments they are wearing.
Discovering fashion from weak data:
The energy of the CRF as a sum of energies encoding unaries for each variable as well as non-parametric pairwise pothentials which reflect the correlations between the different random variables:
User specific features:
- the logarithm of the number of fans
- use rekognition to compute attributes of all the images of each post, keep the features for the image with the highest score.
Then compute the unary potentials as the output of a small neural network, produce an 8-D feature map.
Outfit features:
bag-of-words approach on the "garments" and "colours" meta-data
Setting features:
- the output of a pre-trained scene classifier (multi-layer perceptron, whose input is CNN feature)
- user-provided location: look up the latitude and longitude of the user-provided location, project all the values on the unit sphere, and add some small Guassian noise. Then perform unsupervised clustering using the geodesic distances, and use the geodesic distance from each cluster center as a feature.
Fashion:
- delta time: the time between the creation of the post and when the post was crawled as a feature
- bag-of-words on the "tag"
- comments: parse the comments with the sentiment-analysis model, which can predict how positive a review is on a 1- 5 scale, sum the scores for each post.
- style: style classifier pretrained on Flickr80K.
Correlations:
use a non-parametric function for each pairwise and let the CRF learn the correlations:
Similarly for the other pairwise potentials.
Learn and Inference:
First jointly train the deep networks that are used for feature extraction to predict fashionablity, and estimate the initial latent states using clustering.
Then learn the CRF model using the primal-dual method.
CVPR 2016 paper reading (6)的更多相关文章
- CVPR 2016 paper reading (2)
1. Sketch me that shoe, Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales, Cheng Chan ...
- CVPR 2016 paper reading (3)
DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations, Ziwei Liu, Pin ...
- 浅析"Sublabel-Accurate Relaxation of Nonconvex Energies" CVPR 2016 Best Paper Honorable Mention
今天作了一个paper reading,感觉论文不错,马克一下~ CVPR 2016 Best Paper Honorable Mention "Sublabel-Accurate Rela ...
- (转)CVPR 2016 Visual Tracking Paper Review
CVPR 2016 Visual Tracking Paper Review 本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072 ...
- Paper Reading: In Defense of the Triplet Loss for Person Re-Identification
In Defense of the Triplet Loss for Person Re-Identification 2017-07-02 14:04:20 This blog comes ...
- Paper Reading: Stereo DSO
开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse ...
- 深度视觉盛宴——CVPR 2016
小编按: 计算机视觉和模式识别领域顶级会议CVPR 2016于六月末在拉斯维加斯举行.微软亚洲研究院在此次大会上共有多达15篇论文入选,这背后也少不了微软亚洲研究院的实习生的贡献.大会结束之后,小编第 ...
- Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )
Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...
- Paper Reading - Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation ( CVPR 2015 )
Link of the Paper: https://ieeexplore.ieee.org/document/7298856/ A Correlative Paper: Learning a Rec ...
随机推荐
- class path resource [logback.xml] cannot be resolved to URL because it does not exist 问题解决
今天在自己搭建Springboot 框架的时候,在配置 logging.config=classpath:logback.xml 出现找不到这个文件的错误 经发现是maven的一个写法问题,本来我是打 ...
- js动态创建类对象
1.定义函数,函数中定义类对象 f1=function(){ //定义类 function Pannel(name){ this.name = name; this.print = function( ...
- CF Dima and To-do List
B. Dima and To-do List time limit per test 1 second memory limit per test 256 megabytes input standa ...
- 三、Bean的初始化
一.使用构造器实例化Bean:这是最简单的方式,Spring IOC容器既能使用默认空构造器也能使用有参构造器两种方式创建bean 空构造器 <bean name="bean1&quo ...
- 在centos7中使用supermin制作centos6.5docker镜像
原文 按照原文操作发现,版本并非是我们想要的,而是跟宿主机版本一致.不过可以到dockerhub上pull一个centos6.5的镜像 要安装使用docker 需要内核3.10以上,所以在虚拟机中安装 ...
- git的问题(error: object file .git/objects/* is empty...)的解决方案及对git版本库文件的了解
由于操作不当,导致git版本库出了大问题,如下所示: error: object file .git/objects/8b/61d0135d3195966b443f6c73fb68466264c68e ...
- 动态赋值poster,无法显示
vue操作video的poster属性时,动态给poster赋值,在chrome下是无法显示的 解决办法 在赋值后,找到video元素.load()下就会看到封面图了
- 子div设置float后会导致父div无法自动撑开
本文是从简书复制的, markdown语法可能有些出入, 想看"正版"和更多内容请关注 简书: 小贤笔记 注: 文章部分转载 彩泉 - 博客园 原因:内部的DIV因为float:l ...
- FeatureLayer 里属性数据的提取与显示
我们用工程文件所发布的WebServer下,包含一个个图层,这些图层根据顺序进行了 0 开始的编号,这些就是FeatureLayer的地址了! FeatureLayer 包含了地图的属性信息,十分好用 ...
- Win7下VC++6.0打开文件报错导致其崩溃的解决办法
原文:http://blog.csdn.net/wanghaihao_1/article/details/39005771 在Windows7下安装Visual C++ 6.0后,遇到一个致命的问题打 ...