1. Neuroaesthetics in fashion: modeling the perception of fashionability, Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, Raquel Urtasun, in CVPR 2015.

Goal: learn and predict how fashionable a person looks on a photograph, and suggest subtle improvements that user could make to improve her/his appeal.

This paper proposes a Conditional Random Field model that jointly reasons about several fashionability factors such as the type of outfit (全套装备) and garments (衣服) the user is wearing, the type of the user, the photograph's setting (e.g., the scenery behind the user), and the fashionability score.

Importantly, the proposed model is able to give rich feed back to the user, conveying which garments or even scenery she/he should change in order to improve fashionability.

This paper collects a novel dataset that consists of 144,169 user posts from a clothing-oriented social website chictopia.com. In a post, a user publishes one to six photographs of her/himself wearing a new outfit. Generally each photograph shows a different angle of the user or zoons in on different garments. User sometimes also add a description of the outfit, and/or tags of the types and colors of the garments they are wearing.

Discovering fashion from weak data:

The energy of the CRF as a sum of energies encoding unaries for each variable as well as non-parametric pairwise pothentials which reflect the correlations between the different random variables:

User specific features:

  • the logarithm of the number of fans
  • use rekognition to compute attributes of all the images of each post, keep the features for the image with the highest score.

Then compute the unary potentials as the output of a small neural network, produce an 8-D feature map.

Outfit features:

bag-of-words approach on the "garments" and "colours" meta-data

Setting features:

  • the output of a pre-trained scene classifier (multi-layer perceptron, whose input is CNN feature)
  • user-provided location: look up the latitude and longitude of the user-provided location, project all the values on the unit sphere, and add some small Guassian noise. Then perform unsupervised clustering using the geodesic distances, and use the geodesic distance from each cluster center as a feature.

Fashion:

  • delta time: the time between the creation of the post and when the post was crawled as a feature
  • bag-of-words on the "tag"
  • comments: parse the comments with the sentiment-analysis model, which can predict how positive a review is on a 1- 5 scale, sum the scores for each post.
  • style: style classifier pretrained on Flickr80K.

Correlations:

use a non-parametric function for each pairwise and let the CRF learn the correlations:

Similarly for the other pairwise potentials.

Learn and Inference:

First jointly train the deep networks that are used for feature extraction to predict fashionablity, and estimate the initial latent states using clustering.

Then learn the CRF model using the primal-dual method.

CVPR 2016 paper reading (6)的更多相关文章

  1. CVPR 2016 paper reading (2)

    1. Sketch me that shoe, Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales, Cheng Chan ...

  2. CVPR 2016 paper reading (3)

    DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations, Ziwei Liu, Pin ...

  3. 浅析"Sublabel-Accurate Relaxation of Nonconvex Energies" CVPR 2016 Best Paper Honorable Mention

    今天作了一个paper reading,感觉论文不错,马克一下~ CVPR 2016 Best Paper Honorable Mention "Sublabel-Accurate Rela ...

  4. (转)CVPR 2016 Visual Tracking Paper Review

    CVPR 2016 Visual Tracking Paper Review  本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072 ...

  5. Paper Reading: In Defense of the Triplet Loss for Person Re-Identification

    In Defense of the Triplet Loss for Person Re-Identification  2017-07-02  14:04:20   This blog comes ...

  6. Paper Reading: Stereo DSO

    开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse ...

  7. 深度视觉盛宴——CVPR 2016

    小编按: 计算机视觉和模式识别领域顶级会议CVPR 2016于六月末在拉斯维加斯举行.微软亚洲研究院在此次大会上共有多达15篇论文入选,这背后也少不了微软亚洲研究院的实习生的贡献.大会结束之后,小编第 ...

  8. Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...

  9. Paper Reading - Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation ( CVPR 2015 )

    Link of the Paper: https://ieeexplore.ieee.org/document/7298856/ A Correlative Paper: Learning a Rec ...

随机推荐

  1. CSS学习(二)

    display :   block    inline-block    inline block此元素将显示为块级元素,此元素前后会带有换行符. inline默认.此元素会被显示为内联元素,元素前后 ...

  2. springboot+mybatis+thymeleaf+docker构建的个人站点开源项目(集成了个人主页、个人作品、个人博客)

    前言 My Site 主要功能有:个人首页.个人作品.个人博客为一体的站点,网站的文章和作品均由markdown进行编写,可以满足你的基本需求.如果觉得这个项目不错,请为它点赞支持. 项目架构 JDK ...

  3. Java基础(十二)IO输入输出

    一.IO 概述 1.IO 概念 IO:I 代表 Input 输入:O 代表 Output 输出. Java 中 IO 是以流为基础进行输入输出,所有的数据被串行化(保存)写入输出流,或者从输入流读入. ...

  4. Boxlayout中button改变大小

    需要先设置maximunsize neuStart.setBorder(BorderFactory.createRaisedBevelBorder()); neuStart.setMaximumSiz ...

  5. FusionCharts数据展示成饼状图、柱状图和折线图

    FusionCharts数据展示成饼状图.柱状图和折线图 本文以展示柱状图为例进行介绍,当然这仅仅是一种方法而已:还有很多方法可以用于展示图表,例如echarts,自定义图表标签.使用jfreecha ...

  6. Mac下使用Parallels Desktop安装CentOS操作系统

    Mac下安装Centos后,Mac和Centos之间默认是不通的,需要做下面一些设置后,才能互相共享. 启用网络设置 默认的网络设置是没有enable的,因此,在安装完之后需要开启的话,需要保证开启& ...

  7. 打印thinkphp中的sql语句

    var_dump($repair->fetchSql(true)->where(array('cuername' =>$cuername))->order('applytime ...

  8. csharp:qq weather

    using System; using System.Data; using System.Configuration; using System.Collections; using System. ...

  9. 116.001 - 爱折腾之用 Kindle 读学术论文是什么体验?

    @(116 - Kindle 使用指南) 结论先行 - 强烈安利k2pdfopt,把双栏论文转成kindle友好的pdf 整理转载自知乎@ wei huang 双栏学术论文在6寸屏上看就是个坑 新买的 ...

  10. Data truncation: Out of range value for column 'id' at row 1 ### The

    org.springframework.dao.DataIntegrityViolationException: ### Error updating database. Cause: com.mys ...