题目

[HEOI2016/TJOI2016]求和

关于斯特林数与反演的更多姿势\(\Longrightarrow\)点这里

做法

\[\begin{aligned}\\
Ans&=\sum\limits_{i=0}^n \sum\limits_{j=0}^i \begin{Bmatrix}i\\j\end{Bmatrix}2^j×j!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1\\
&=\sum\limits_{i=0}^n \sum\limits_{j=0}^n \begin{Bmatrix}i\\j\end{Bmatrix}2^j×j!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2\\
&=\sum\limits_{j=0}^n 2^j×j!\sum\limits_{i=0}^n \begin{Bmatrix}i\\j\end{Bmatrix}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~3\\
&=\sum\limits_{j=0}^n 2^j×j!\sum\limits_{i=0}^n \sum\limits_{k=0}^j\frac{(-1)^k}{k!}\cdot\frac{(j-k)^i}{(j-k)!}~~~~~~~~~~~~~~~~~~~~4\\
&=\sum\limits_{j=0}^n 2^j×j!\sum\limits_{k=0}^j\frac{(-1)^k}{k!}\cdot\frac{ \sum\limits_{i=0}^n (j-k)^i}{(j-k)!}~~~~~~~~~~~~~~~~~~~~~~5\\
&=\sum\limits_{j=0}^n 2^j×j!\sum\limits_{k=0}^j\frac{(-1)^k}{k!}\cdot \frac{(j-k)^{n+1}-1}{(j-k-1)(j-k)!}~~~~~~~6\\
\end{aligned}\]

  • \(2:\begin{Bmatrix}i\\j\end{Bmatrix}=0(i>j)\)
  • \(3:\)移项
  • \(4:\)第二类斯特林的性质
  • \(5:\)移项化卷积
  • \(6:\)等比公式

总结

这题非常有意思,最后一步对于蒟蒻来说还是少见的,推到\(4\)谁都会,然后就无从下手了

以至于会从头考虑\(2^j×j!\)的性质,特别容易想偏

Code

#include<bits/stdc++.h>
typedef int LL;
typedef long long L;
const LL maxn=3e5+9,mod=998244353,g=3,_g=332748118;
inline LL Pow(LL base,LL b){
LL ret(1);
while(b){
if(b&1) ret=(L)ret*base%mod; base=(L)base*base%mod; b>>=1;
}return ret;
}
LL fac[maxn],fav[maxn],r[maxn],F[maxn],G[maxn],W[maxn];
inline void NTT(LL *a,LL n,LL type){
for(LL i=0;i<n;++i) if(i<r[i]) std::swap(a[i],a[r[i]]);
for(LL mid=1;mid<n;mid<<=1){
LL wn(Pow(type?g:_g,(mod-1)/(mid<<1)));
W[0]=1; for(LL i=1;i<mid;++i) W[i]=(L)W[i-1]*wn%mod;
for(LL R=mid<<1,j=0;j<n;j+=R)
for(LL k=0;k<mid;++k){
LL x(a[j+k]),y((L)W[k]*a[j+mid+k]%mod);
a[j+k]=x+y; if(a[j+k]>=mod) a[j+k]%=mod;
a[j+mid+k]=x-y; if(a[j+mid+k]<0) a[j+mid+k]+=mod;
}
}
}
inline LL Fir(LL n){
LL limit(1),len(0);
while(limit<n){
limit<<=1; ++len;
}
for(LL i=0;i<limit;++i) r[i]=(r[i>>1]>>1)|((i&1)<<len-1);
return limit;
}
inline LL Solve_fg(LL n){
for(LL i=0;i<=n;++i) F[i]=(L)(i&1?mod-1:1)*fav[i]%mod;
for(LL i=0;i<=n;++i) G[i]=(L)(Pow(i,n+1)+mod-1)%mod*Pow(i-1<0?i+mod-1:i-1,mod-2)%mod*fav[i]%mod;
G[1]=n+1;
LL limit(Fir(n+1<<1));
NTT(F,limit,1); NTT(G,limit,1);
for(LL i=0;i<limit;++i) F[i]=(L)F[i]*G[i]%mod;
NTT(F,limit,0);
LL ty(Pow(limit,mod-2)); for(LL i=0;i<=n;++i) F[i]=(L)F[i]*ty%mod; LL ret(0);
for(LL i=0;i<=n;++i) ret=(L)(ret+(L)Pow(2,i)*fac[i]%mod*F[i]%mod)%mod;
return ret;
}
LL n;
int main(){
scanf("%d",&n);
fac[0]=fac[1]=1;
for(LL i=2;i<=n;++i) fac[i]=(L)fac[i-1]*i%mod;
fav[n]=Pow(fac[n],mod-2);
for(LL i=n;i>=1;--i) fav[i-1]=(L)fav[i]*i%mod; printf("%d",Solve_fg(n));
return 0;
}

[HEOI2016/TJOI2016]求和(第二类斯特林数)的更多相关文章

  1. [HEOI2016/TJOI2016]求和——第二类斯特林数

    给你斯特林数就换成通项公式,给你k次方就换成斯特林数 考虑换成通项公式之后,组合数没有什么好的处理方法 直接拆开,消一消阶乘 然后就发现了(j-k)和k! 往NTT方向靠拢 然后大功告成 其实只要想到 ...

  2. BZOJ 4555 Luogu P4091 [HEOI2016/TJOI2016]求和 (第二类斯特林数)

    题目链接 (luogu) https://www.luogu.org/problem/P4091 (bzoj) https://www.lydsy.com/JudgeOnline/problem.ph ...

  3. 【BZOJ4555】【TJOI2016】【HEOI2016】求和 第二类斯特林数 NTT

    题目大意 求\(f(n)=\sum_{i=0}^n\sum_{j=0}^i2^j\times j!\times S(i,j)\\\) 对\(998244353\)取模 \(n\leq 100000\) ...

  4. bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...

  5. BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)

    题目链接 \(Description\) 求 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj!\]对998244353取模后的结果. \(n<=10^5\) \(Sol ...

  6. BZOJ4555 HEOI2016/TJOI2016求和(NTT+斯特林数)

    S(i,j)=Σ(-1)j-k(1/j!)·C(j,k)·ki=Σ(-1)j-k·ki/k!/(j-k)!.原式=ΣΣ(-1)j-k·ki·2j·j!/k!/(j-k)! (i,j=0~n).可以发现 ...

  7. bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化

    [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 679  Solved: 534[Submit][S ...

  8. 【BZOJ 4555】[Tjoi2016&Heoi2016]求和 多项式求逆/NTT+第二类斯特林数

    出处0.0用到第二类斯特林数的性质,做法好像很多,我打的是直接ntt,由第二类斯特林数的容斥公式可以推出,我们可以对于每一个i,来一次ntt求出他与所有j组成的第二类斯特林数的值,这个时候我们是O(n ...

  9. P4091 [HEOI2016/TJOI2016]求和(第二类斯特林数+NTT)

    传送门 首先,因为在\(j>i\)的时候有\(S(i,j)=0\),所以原式可以写成\[Ans=\sum_{i=0}^n\sum_{j=0}^nS(i,j)\times 2^j\times j! ...

随机推荐

  1. socket文件权限变更引起crs无法启动故障

    Crs无法正常启动,也无法关闭.[root@rac101 ~]# crsctl stop crsStopping resources. This could take several minutes. ...

  2. 第9步:ASMCA创建磁盘组

    注意,创建磁盘组时需要以grid用户身份执行,在那之前可能需要以root身份执行xhost+,即命令: 代码1 [root@sgdb1~]# xhost+ [root@sgdb1~]# su – gr ...

  3. WPF 附加属性的用法 (一)

    public class MDCTest { public static DependencyProperty MouseDoubleClickCommandProperty = Dependency ...

  4. ModelShowDialog缓存上次浏览的URL

    1. 一种解决方法设置每次清楚浏览的页面. In IE7, go to Tools  |  Internet Options.  Click the Browsing History "Se ...

  5. python之进制转换

    Python中二进制是以0b开头的:    例如: 0b11 则表示十进制的3 8进制是以0开头的:    例如: 011则表示十进制的9 16进制是以0x开头的:    例如: 0x11则表示十进制 ...

  6. 求其中同一个主叫号码的两次通话之间间隔大于10秒的通话记录ID

    求其中同一个主叫号码的两次通话之间间隔大于10秒的通话记录ID 例如:6,7,8,9,10条记录均符合 ID 主叫号码 被叫号码      通话起始时间            通话结束时间       ...

  7. HYSBZ 2565 最长双回文串 (回文树)

    2565: 最长双回文串 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 1377  Solved: 714 [Submit][Status][Dis ...

  8. 常用的mysql语句

    为了方便学习mysql,把接触到的sql收集一下,忘记的时候可以查询一下. 连接mysql数据库: mysql -u 用户名 -p 输入密码. 创建数据库: create database 数据库名; ...

  9. Oracle Schema Objects——Tables——Overview of Tables

    Oracle Schema Objects Overview of Tables A table is the basic unit of data organization in an Oracle ...

  10. pro-select-limit-if

    drop procedure if exists p9; CREATE PROCEDURE p9 () BEGIN DECLARE a INT; DECLARE b INT; DECLARE c IN ...