bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)
每个pi要求
这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=,inf=1e9;
int n;
int a[maxn],f[maxn][];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
void solve(int l,int r,int L,int R,int ty)
{
if(l>r||L>R)return;
int mid=(l+r)>>,pos;
double mx=0.0;
for(int i=L;i<=R&&i<=mid;i++)
{
if((double)a[i]-a[mid]+sqrt(mid-i)>=mx)
mx=(double)a[i]-a[mid]+sqrt(mid-i),pos=i;
}
f[mid][ty]=(int)ceil(mx);
solve(l,mid-,L,pos,ty);solve(mid+,r,pos,R,ty);
}
int main()
{
read(n);
for(int i=;i<=n;i++)read(a[i]);
solve(,n,,n,);
reverse(a+,a++n);
solve(,n,,n,);
for(int i=;i<=n;i++)printf("%d\n",max(f[i][],f[n-i+][]));
}
bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)的更多相关文章
- BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】
Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...
- BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】
题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...
- BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)
题意 题目链接 Sol 很nice的决策单调性题目 首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$. 按套路把绝对值拆掉,$p_i = ...
- P3515 [POI2011]Lightning Conductor(决策单调性分治)
P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...
- 【洛谷3515】[POI2011] Lightning Conductor(决策单调性)
点此看题面 大致题意: 给你一个序列,对于每个\(i\)求最小的自然数\(p\)使得对于任意\(j\)满足\(a_j\le a_i+p-\sqrt{|i-j|}\). 证明单调性 考虑到\(\sqrt ...
- 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)
题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...
- bzoj 2216: [Poi2011]Lightning Conductor【决策单调性dp+分治】
参考:https://blog.csdn.net/clove_unique/article/details/57405845 死活不过样例看了题解才发现要用double.... \[ a_j \leq ...
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- [POI2011]Lightening Conductor(决策单调性)
好久没写过决策单调性了. 这题其实就是 $p_i=\lceil\max\limits_{j}(a_j-a_i+\sqrt{|i-j|})\rceil$. 拆成两边,先只考虑 $j<i$,然后反过 ...
随机推荐
- Github协作图想
首先 git pull 从远程拉下代码,并在本地与本地代码自动合并 在本地解决冲突后,可将本地代码进行远程推送 版本库的Repository中存储的是版本树状链,每一根链接线代表每一次的修改,每一个节 ...
- django启动创建用户失败
a django应用启动 b 访问127.0.0.1:8000,报错信息如下,原因为没有这个用户需要创建下用户 c 创建用户过程中报错原因是因为添加了app需要告诉django,这个 模型发生了改变, ...
- Microservices with Spring Boot
找到一套比较不错的Spring Boot/Cloud入门教程,推荐一下. https://dzone.com/users/1041459/ranga_pec.html
- Train Problem(栈的应用)
Description As the new term comes, the Ignatius Train Station is very busy nowadays. A lot of studen ...
- Thunder团队——事后诸葛亮会议
小组名称:Thunder 项目名称:爱阅APP 小组成员:王航 李传康 代秋彤 邹双黛 苗威 宋雨 胡佑蓉 杨梓瑞 一.设想和目标 1.我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型 ...
- Alpha版——版本控制报告(Thunder)
Part One 回答问题: 0.在吹牛之前,先回答这个问题:如果你的团队来了一个新队员,有一台全新的机器,你们是否有一个文档,只要设置了相应的权限,她就可以根据文档,从头开始搭建环境,并成功地把最新 ...
- JavaScript初探系列之Ajax应用
一 什么是Ajax Ajax是(Asynchronous JavaScript And XML)是异步的JavaScript和xml.也就是异步请求更新技术.Ajax是一种对现有技术的一种新的应用,不 ...
- Java容器之Iterator接口
Iterator 接口: 1. 所有实现了Collection接口的容器类都有一个iterator方法用以返回一个实现了Iterator接口的对象. 2. Iterator 对象称作迭代器,用以方便的 ...
- 无法启动此程序,因为计算机中丢失 zlibd.dll【OSG】
在配置OSG的过程中遇到了这个问题.记录一下. zlibd.dll这个DLL可以在第三方库3rdParty里面找到.找到之后复制到OSG的bin目录下即可.
- lol人物模型提取(一)
前段时间去青岛搞团建去了,闲来无事逛了会儿淘宝,无想买个lol手办,意之间发现了这张店铺宣传图: 哎呀我去,这模型做得挺逼真啊,然而这家店铺是卖zoe的cosplay道具的,不是手办-_-|| ...