bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)
每个pi要求

这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=,inf=1e9;
int n;
int a[maxn],f[maxn][];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
void solve(int l,int r,int L,int R,int ty)
{
if(l>r||L>R)return;
int mid=(l+r)>>,pos;
double mx=0.0;
for(int i=L;i<=R&&i<=mid;i++)
{
if((double)a[i]-a[mid]+sqrt(mid-i)>=mx)
mx=(double)a[i]-a[mid]+sqrt(mid-i),pos=i;
}
f[mid][ty]=(int)ceil(mx);
solve(l,mid-,L,pos,ty);solve(mid+,r,pos,R,ty);
}
int main()
{
read(n);
for(int i=;i<=n;i++)read(a[i]);
solve(,n,,n,);
reverse(a+,a++n);
solve(,n,,n,);
for(int i=;i<=n;i++)printf("%d\n",max(f[i][],f[n-i+][]));
}
bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)的更多相关文章
- BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】
Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...
- BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】
题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...
- BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)
题意 题目链接 Sol 很nice的决策单调性题目 首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$. 按套路把绝对值拆掉,$p_i = ...
- P3515 [POI2011]Lightning Conductor(决策单调性分治)
P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...
- 【洛谷3515】[POI2011] Lightning Conductor(决策单调性)
点此看题面 大致题意: 给你一个序列,对于每个\(i\)求最小的自然数\(p\)使得对于任意\(j\)满足\(a_j\le a_i+p-\sqrt{|i-j|}\). 证明单调性 考虑到\(\sqrt ...
- 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)
题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...
- bzoj 2216: [Poi2011]Lightning Conductor【决策单调性dp+分治】
参考:https://blog.csdn.net/clove_unique/article/details/57405845 死活不过样例看了题解才发现要用double.... \[ a_j \leq ...
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- [POI2011]Lightening Conductor(决策单调性)
好久没写过决策单调性了. 这题其实就是 $p_i=\lceil\max\limits_{j}(a_j-a_i+\sqrt{|i-j|})\rceil$. 拆成两边,先只考虑 $j<i$,然后反过 ...
随机推荐
- hackhttp模板的介绍
hackhttp模板:造福人类 发起get/post/ 发起http原始数据包 漏洞利用:更为快捷放放不安 #hackhttp使用方法hh=hackhttp.hackhttp() code,head, ...
- Unity与服务区交互数据
Unity与服务区交互数据 Unity可能在用的时候使用到登陆等需要与服务器交互数据.今天尝试使用了WWW类和WWWForm类来实现Get请求与Post请求. 1.WWW Unity圣典解释: WWW ...
- Java开发工程师(Web方向) - 03.数据库开发 - 第1章.JDBC
第1章--JDBC JDBC基础 通过Java Database Connectivity可以实现Java程序对后端数据库的访问 一个完整的数据库部署架构,通常是由客户端和服务器端两部分组成 客户端封 ...
- Java开发工程师(Web方向) - 02.Servlet技术 - 期末考试
Servlet课程考试 Servlet课程考试 Servlet课程考试 总分:55分 限定时间:120分钟 进入考试 答案已成功提交!请耐心等待成绩公布 Servlet课程考试: 1(12分) 简单谈 ...
- 小程序button 去边框
/*使用 button::after{ border: none; } 来去除边框*/.free-btn-bordernone{ background: none !important; color: ...
- (一)Spring Boot修改内置Tomcat端口号--解决tomcat端口被占用的问题
Spring Boot 内置Tomcat默认端口号为8080,在开发多个应用调试时很不方便,本文介绍了修改 Spring Boot内置Tomcat端口号的方法. 一.EmbeddedServletCo ...
- 简单说明hadoop集群运行三种模式和配置文件
Hadoop的运行模式分为3种:本地运行模式,伪分布运行模式,集群运行模式,相应概念如下: 1.独立模式即本地运行模式(standalone或local mode)无需运行任何守护进程(daemon) ...
- Tunnel上传遇到字符[NUL]问题
模拟生产环境下数据格式,再现异常情景: Notepad++怎样输入字符[NUL]? 安装 Hex-Editor 插件: HexEditor插件用于在notepad++中查看16进制文件,只需要将此 ...
- 有个AI陪你一起写代码,是种怎样的体验?| 附ICLR论文
从前,任何程序的任何功能,都需要一行一行敲出来. 后来,程序猿要写的代码越来越多,世界上便有了各种各样的API,来减少大家的工作量.有些功能,可以让API来帮我们实现. 不过,人类写下的话,API并不 ...
- 在mesh client示例中加入spi_slave接口(without IDE)
在mesh client示例中加入spi_slave接口(without IDE) 主要是理解cmake构建的过程,然后修改工程中的inlcude路径及c源文件. 1. 解压mesh_sdk unzi ...