bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)
每个pi要求
这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=,inf=1e9;
int n;
int a[maxn],f[maxn][];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
void solve(int l,int r,int L,int R,int ty)
{
if(l>r||L>R)return;
int mid=(l+r)>>,pos;
double mx=0.0;
for(int i=L;i<=R&&i<=mid;i++)
{
if((double)a[i]-a[mid]+sqrt(mid-i)>=mx)
mx=(double)a[i]-a[mid]+sqrt(mid-i),pos=i;
}
f[mid][ty]=(int)ceil(mx);
solve(l,mid-,L,pos,ty);solve(mid+,r,pos,R,ty);
}
int main()
{
read(n);
for(int i=;i<=n;i++)read(a[i]);
solve(,n,,n,);
reverse(a+,a++n);
solve(,n,,n,);
for(int i=;i<=n;i++)printf("%d\n",max(f[i][],f[n-i+][]));
}
bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)的更多相关文章
- BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】
Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...
- BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】
题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...
- BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)
题意 题目链接 Sol 很nice的决策单调性题目 首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$. 按套路把绝对值拆掉,$p_i = ...
- P3515 [POI2011]Lightning Conductor(决策单调性分治)
P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...
- 【洛谷3515】[POI2011] Lightning Conductor(决策单调性)
点此看题面 大致题意: 给你一个序列,对于每个\(i\)求最小的自然数\(p\)使得对于任意\(j\)满足\(a_j\le a_i+p-\sqrt{|i-j|}\). 证明单调性 考虑到\(\sqrt ...
- 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)
题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...
- bzoj 2216: [Poi2011]Lightning Conductor【决策单调性dp+分治】
参考:https://blog.csdn.net/clove_unique/article/details/57405845 死活不过样例看了题解才发现要用double.... \[ a_j \leq ...
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- [POI2011]Lightening Conductor(决策单调性)
好久没写过决策单调性了. 这题其实就是 $p_i=\lceil\max\limits_{j}(a_j-a_i+\sqrt{|i-j|})\rceil$. 拆成两边,先只考虑 $j<i$,然后反过 ...
随机推荐
- 180623-SpringBoot之logback配置文件
SpringBoot配置logback 项目的日志配置属于比较常见的case了,之前接触和使用的都是Spring结合xml的方式,引入几个依赖,然后写个 logback.xml 配置文件即可,那么在S ...
- Linux命令应用大词典-第28章 硬件管理
28.1 lscpu:显示有关CPU架构的信息 28.2 nproc:显示当前进程可用的CPU数目 28.3 chcpu:配置CPU
- C 判断成绩是否及格
#include <stdio.h> int main(int argc, char **argv) { // 新建两个变量 pass代表及格分数的固定变量 score代表学生成绩的一个 ...
- linux系统简单命令
# uname -a # 查看内核/操作系统/CPU信息 # head -n 1 /etc/issue # 查看操作系统版本 # cat /proc/cpuinfo # 查看CPU信息 # hostn ...
- lintcode 466. 链表节点计数
466. 链表节点计数 计算链表中有多少个节点. 样例 给出 1->3->5, 返回 3. /** * Definition of ListNode * class ListNode ...
- lintcode: Missing String
Missing String 描述: Given two strings, you have to find the missing string. Have you met this questi ...
- 告别加载dll 出错开机加载项大揭秘
提到开机加载(load)项,大家不要以为就是系统启动(run)项.最简单的例子是,杀毒软件或者用户手动删除病毒文件后,注册表中的自动加载信息仍在,登陆系统时就会提示"加载*dll出错,系统找 ...
- LeetCode 138——复制带随机指针的链表
1. 题目 2. 解答 第一次遍历链表的时候,复制旧链表的节点值建立一个新的链表,同时定义一个 unordered_map 作为哈希表,哈希表的键为旧链表的节点指针,值为新链表的节点指针. 然后,第二 ...
- openstack对接VMware浅析
前言 本文是对openstack对接vmware的浅析,所以本文重点是以下两点: 先了解它的整体架构,搞清楚为什么要用这样的架构: 然后再了解架构中的各个组件,组件提供的主要功能与各个组件之间的交互 ...
- 最全NB-IoT/eMTC物联网解决方案名录汇总
NB-IoT/eMTC等蜂窝物联网技术的成熟和商用,占据低功耗广域网络(LPWAN)的主流地位,推动全球物联网新一轮发展热潮,越来越多的行业开始采用物联网方案来解决解决实际问题.实现落地应用,越来越多 ...