3437: 小P的牧场

Time Limit: 10 Sec  Memory Limit: 128 MB

Submit: 1502  Solved: 836

[Submit][Status][Discuss]

Description

小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。

Input

第一行一个整数 n 表示牧场数目

第二行包括n个整数,第i个整数表示ai

第三行包括n个整数,第i个整数表示bi

Output

只有一行,包括一个整数,表示最小花费

Sample Input

4

2424

3142


Sample Output

9

样例解释

选取牧场1,3,4建立控制站,最小费用为2+(2+1*1)+4=9。

1<=n<=1000000, 0 < a i ,bi < = 10000

与P1096仓库建设很像,不过路径权值变成了1

我们用一个比较牛的前缀和:s[i]为b[i]前缀和,c[i]为b[i]前缀和

那么从j + 1全部搬到i的代价就是(s[i] - s[j]) * i - (c[i] - c[j])【想象一下】

那么我们设f[i]表示在i建厂的最小代价

f[i] = min{f[j] + (s[i] - s[j]) * i - (c[i] - c[j])} + A[i]

去掉常量化简得到(f[j] + c[j]) = i * s[i] + f[i]

我们就的到了y = i * x + f[j]这样的直线求截距最大,维护凸包就好了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define eps 1e-9
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 1000005,maxm = 100005,INF = 1000000000;
inline LL read(){
LL out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
}
LL n,A[maxn],B[maxn],s[maxn],c[maxn],f[maxn],q[maxn],head,tail;
inline double slope(int u,int v){
return (double)(f[u] + c[u] - f[v] - c[v]) / (s[u] - s[v]);
}
inline LL getf(int i,int j){
return f[j] + (s[i] - s[j]) * i - (c[i] - c[j]) + A[i];
}
int main()
{
n = read();
REP(i,n) A[i] = read();
REP(i,n) B[i] = read(),s[i] = s[i - 1] + B[i],c[i] = c[i - 1] + B[i] * i;
head = tail = 0;
for (int i = 1; i <= n; i++){
while (head < tail && slope(q[head],q[head + 1]) < i + eps) head++;
f[i] = getf(i,q[head]);
while (head < tail && slope(q[tail],q[tail - 1]) + eps > slope(i,q[tail])) tail--;
q[++tail] = i;
}
cout<<f[n]<<endl;
return 0;
}

BZOJ3437 小P的牧场 【斜率优化dp】的更多相关文章

  1. BZOJ3437:小P的牧场(斜率优化DP)

    Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制 ...

  2. bzoj3437小P的牧场 斜率优化dp

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1542  Solved: 849[Submit][Status][Discus ...

  3. 【bzoj3437】小P的牧场 斜率优化dp

    题目描述 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个 ...

  4. BZOJ 3437: 小P的牧场 斜率优化DP

    3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...

  5. bzoj3427小P的牧场(斜率优化dp)

    小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧 ...

  6. 【BZOJ3437】小P的牧场 斜率优化

    [BZOJ3437]小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这 ...

  7. bzoj 3437: 小P的牧场 -- 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...

  8. BZOJ3437 小P的牧场 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8696321.html 题目传送门 - BZOJ3437 题意 给定两个序列$a,b$,现在划分$a$序列. 被划 ...

  9. bzoj3437小P的牧场

    bzoj3437小P的牧场 题意: n个牧场,在每个牧场见控制站的花费为ai,在该处建控制站能控制从此处到左边第一个控制站(或边界)之间的牧场.一个牧场被控制的花费等于它到控制它的控制站之间的牧场数目 ...

  10. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

随机推荐

  1. 解决replace格式替换后光标定位问题

    场景:格式化银行卡444格式 手机号344格式 身份证号684格式 校验数据格式,replace后光标定位错乱 或光标一直定位在最后 解决,只针对input,代码用的vue: 获取光标位置: getC ...

  2. 【二】H.264/MPEG-4 Part 10 White Paper 翻译之 Prediction of Intra Macroblocks

    翻译版权所有,转载请注明出处~ xzrch@2018.09.14 ------------------------------------------------------------------- ...

  3. Windows运行机理——API与SDK

    Windows运行机理这系列文章都是来至于<零基础学Qt4编程>——吴迪,个人觉得写得很好,所以搬运加以整理. 首先 API:Application Programmaing Interf ...

  4. Error -26377: No match found for the requested parameter

    Error -26377: No match found for the requested parameter

  5. JMeter录制Web脚本

    设置Firefox浏览器代理, 点击右上角的菜单: 点击选项: 点击高级: 点击设置: 点击手动配置代理, 输入本地的IP地址和端口号8888,与JMeter代理服务器的端口号保持一致: 好了,浏览器 ...

  6. CSS3自定义字体

    原文摘自:https://www.cnblogs.com/moqiutao/archive/2015/12/23/5070463.html 总节: 1) 定义字体标准格式: @font-face { ...

  7. django 增删改查操作 数据库Mysql

    下面介绍一下django增删改查操作: 1.view.py # -*- coding: utf-8 -*-from __future__ import unicode_literalsfrom dja ...

  8. 百度翻译api 实现简易微信翻译小程序

    介绍 口袋翻译 口袋翻译 微信小程序 翻译功能 含7类语言的相互翻译 包含最近10条的翻译历史回溯功能 微信搜索:简e翻译 功能展示   使用百度翻译api需要申请 appid 与 key 并在 ap ...

  9. OpenMPI源码剖析2:ompi_mpi_errors_are_fatal_comm_handler函数

    上一篇文章说道,初始化失败会有一个函数调用: ompi_mpi_errors_are_fatal_comm_handler(NULL, NULL, message); 所以这里简单地进入了 ompi_ ...

  10. 【机器学习】线性回归sklearn实现

    线性回归原理介绍 线性回归python实现 线性回归sklearn实现 这里使用sklearn框架实现线性回归.使用框架更方便,可以少写很多代码. 写了三个例子,分别是单变量的.双变量的和多变量的.单 ...