51nod 1274 最长递增路径(DP)
一开始自己想了一种跑的巨慢。。写了题解的做法又跑的巨快。。一脸懵逼
显然要求边权递增就不可能经过重复的边了,那么设f[i]为第i条边出发能走多远就好了,这是我一开始的写法,可能dfs冗余状态较多,跑的极慢
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
struct poi{int too,dis,pre;}e[maxn];
int n,m,x,y,z,tot,ans;
int last[maxn],dp[maxn];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
void add(int x,int y,int z){e[++tot].too=y;e[tot].dis=z;e[tot].pre=last[x];last[x]=tot;}
int dfs(int x,int fa)
{
if(dp[x])return dp[x];dp[x]=;
for(int i=last[e[x].too];i;i=e[i].pre)
if(i!=fa&&e[i].dis>e[x].dis)dfs(i,x),dp[x]=max(dp[x],dp[i]+);
return dp[x];
}
int main()
{
read(n);read(m);
for(int i=;i<=m;i++)read(x),read(y),read(z),add(x,y,z),add(y,x,z);
for(int i=;i<=tot;i++)if(!dp[i])dfs(i,);
for(int i=;i<=tot;i++)ans=max(ans,dp[i]);
printf("%d\n",ans);
return ;
}
题解的做法是按照边权排序,然后就可以用点来转移了...
(然后就踩在yyl头上了
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
struct poi{int x,too,dis;}e[maxn];
int n,m,x,y,z,ans,last;
int g[maxn],f[maxn];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
bool cmp(poi a,poi b){return a.dis<b.dis;}
int main()
{
read(n);read(m);
for(int i=;i<=m;i++)read(x),read(y),read(z),e[i].x=x,e[i].too=y,e[i].dis=z;
sort(e+,e++m,cmp);last=;
for(int i=;i<=m;i++)
if(i==m||e[i].dis<e[i+].dis)
{
for(int j=last;j<=i;j++)
g[e[j].too]=f[e[j].too],g[e[j].x]=f[e[j].x];
for(int j=last;j<=i;j++)
f[e[j].too]=max(f[e[j].too],g[e[j].x]+),f[e[j].x]=max(f[e[j].x],g[e[j].too]+);
last=i+;
}
for(int i=;i<n;i++)ans=max(ans,f[i]);
printf("%d\n",ans);
return ;
}
51nod 1274 最长递增路径(DP)的更多相关文章
- 51nod1274 最长递增路径
将边排序后dp一下就可以了. #include<cstdio> #include<cstring> #include<cctype> #include<alg ...
- [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- 51nod 1134 最长递增子序列
题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> usi ...
- [Swift]LeetCode329. 矩阵中的最长递增路径 | Longest Increasing Path in a Matrix
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- 【题解】最长递增路径 [51nod1274]
[题解]最长递增路径 [51nod1274] 传送门:最长递增路径 \([51nod1274]\) [题目描述] 一个可能有自环有重边的无向图,每条边都有边权.输入两个整数 \(n,m\) 表示一共 ...
- Java实现 LeetCode 329 矩阵中的最长递增路径
329. 矩阵中的最长递增路径 给定一个整数矩阵,找出最长递增路径的长度. 对于每个单元格,你可以往上,下,左,右四个方向移动. 你不能在对角线方向上移动或移动到边界外(即不允许环绕). 示例 1: ...
- 51nod 1376 最长递增子序列的数量(线段树)
51nod 1376 最长递增子序列的数量 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递 ...
- 51nod 1218 最长递增子序列 | 思维题
51nod 1218 最长递增子序列 题面 给出一个序列,求哪些元素可能在某条最长上升子序列中,哪些元素一定在所有最长上升子序列中. 题解 YJY大嫂教导我们,如果以一个元素结尾的LIS长度 + 以它 ...
- Leetcode 329.矩阵中的最长递增路径
矩阵中的最长递增路径 给定一个整数矩阵,找出最长递增路径的长度. 对于每个单元格,你可以往上,下,左,右四个方向移动. 你不能在对角线方向上移动或移动到边界外(即不允许环绕). 示例 1: 输入: n ...
随机推荐
- python3 爬虫爬取深圳公租房轮候库(深圳房网)
深圳公租房轮候库已经朝着几十万人的规模前进了,这是截至16年10月之前的数据了,贴上来大家体会下 所以17年已更新妥妥的10W+ 今天就拿这个作为爬虫的练手项目 1.环境准备: 操作系统:win10 ...
- leetcode-零钱兑换—int溢出
零钱兑换 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输入: c ...
- 机器学习介绍(introduction)-读书笔记-
一,什么是机器学习 第一个机器学习的定义来自于 Arthur Samuel.他定义机器学习为,在进行特定编程的情况下,给予计算机学习能力的领域.Samuel 的定义可以回溯到 50 年代,他编写了一个 ...
- LeetCode 104——二叉树中的最大深度
1. 题目 2. 解答 如果根节点为空,直接返回 0.如果根节点非空,递归得到其左右子树的深度,树的深度就为左右子树深度的最大值加 1. /** * Definition for a binary t ...
- Mysql-表和字段操作
1.查看表 show tables; 2.创建表 create table test( id int primary key auto_increment, name varchar(40) not ...
- Python3 小工具-ICMP扫描
from scapy.all import * import optparse import threading import os def scan(ipt): pkt=IP(dst=ipt)/IC ...
- 一:HDFS 用户指导
1.hdfs的牛逼特性 Hadoop, including HDFS, is well suited for distributed storage and distributed processin ...
- Python3 循环表达式
一 While循环 基本循环 while 条件: 执行内容 #循环体 ... #循环体 ... #循环体 # 若条件为真,执行循环体内容 # 若条件为假,不执行循环体内容 实例1(Python 3.0 ...
- 物联网常见通信协议RFID、NFC、Bluetooth、ZigBee等梳理
1 概述 在上一篇文章<物联网常见通信协议与通讯协议梳理[上]-通讯协议>中,对物联网常用通信协议和通讯协议作了区分,并对通讯协议进行了分享:本文将对常用的通信协议进行剖析,重点面向市场 ...
- 第一届"进化论杯"月赛 解题报告
Problem A: derivative 思路:水题.算出二阶导数,直接 printf 结果. 在求出二阶导数后可以不立刻化简,此时式中带有大量 e^(-x) 项.此时直接可以代入 ln|x0|,把 ...