【线段树】【P3740】 [HAOI2014]贴海报
Description
Bytetown城市要进行市长竞选,所有的选民可以畅所欲言地对竞选市长的候选人发表言论。为了统一管理,城市委员会为选民准备了一个张贴海报的electoral墙。
张贴规则如下:
electoral墙是一个长度为N个单位的长方形,每个单位记为一个格子;
所有张贴的海报的高度必须与electoral墙的高度一致的;
每张海报以“A B”表示,即从第A个格子到第B个格子张贴海报;
后贴的海报可以覆盖前面已贴的海报或部分海报。
现在请你判断,张贴完所有海报后,在electoral墙上还可以看见多少张海报。
Input
第一行: N M 分别表示electoral墙的长度和海报个数
接下来M行: Ai Bi 表示每张海报张贴的位置
Output
输出贴完所有海报后,在electoral墙上还可以看见的海报数。
Sample Input
Sample Output
Hint
10<= N <= 10000000 1<=M<=1000 1<= Ai <= Bi <=10000000
所有的数据都是整数。数据之间有一个空格
Solution
考虑暴力修改 上界复杂度将达到O(nm)。显然扯淡。
考虑进行优化。由于是对区间操作。最后输出答案也相当于对区间[1,n]进行询问,于是自然想到对区间操作最拿手的线段树。
如果在线修改,记录区间上有几个广告,以及区间上广告是否覆盖完全(即最右侧的广告在区间外是否还有一块),合并时f[p]=f[dp]+f[ddp](+1),会产生问题:如样例图片:
观察样例中间被英文标出的地方,使用上述算法,改区间会被判定为有三个广告。但事实上只有两个,因为是上面覆盖了下面的一部分。
如何解决此问题?考虑广告数量太大无法状压,但不强制在线,于是我们把广告都读进来,倒序插入。因为较早贴上的广告显然无法影响到后面的广告。这里再次使用了阶段划分和无后效性的思想。对于一个区间,如果已经被提前计算的广告完全覆盖,则直接return。一个广告能被看见,当且仅当他能覆盖一个独立的区间。至此,问题得解。
Code
#include<cstdio>
#include<algorithm>
#define ci const int
#define maxn 10000010
#define maxt 40000010 inline void qr(int &x) {
char ch=getchar(),last=' ';
while(ch>''||ch<'') last=ch,ch=getchar();
while(ch>=''&&ch<='') x=(x<<)+(x<<)+(ch^),ch=getchar();
if(last=='-') x=-x;
} inline int max(const int &a,const int &b) {if(a>b) return a;return b;}
inline int min(const int &a,const int &b) {if(a<b) return a;return b;}
inline int abs(const int &a) {if(a>=) return a;return -a;} inline void swap(int &a,int &b) {int temp=a;a=b;b=temp;} int n,m,a,b,cnt; bool tree[maxt],judge; struct M {
int l,r;
};
M MU[maxn]; void change(ci l,ci r,ci p,ci aiml,ci aimr) {
if(l>r) return;
if(l>aimr||r<aiml) return;
if(l>=aiml&&r<=aimr) {if(!tree[p]) tree[p]=judge=true;return;}
if(tree[p]) return;
int mid=(l+r)>>,dp=p<<,ddp=dp|;
change(l,mid,dp,aiml,aimr);change(mid+,r,ddp,aiml,aimr);
tree[p]=tree[dp]&&tree[ddp];
} int main() {
qr(n);qr(m);
for(int i=;i<=m;++i) {qr(MU[i].l);qr(MU[i].r);}
do {
judge=false;
change(,n,,MU[m].l,MU[m].r);
if(judge) ++cnt;
} while(--m);
printf("%d\n",cnt);
return ;
}
Summary
1、阶段划分是做任何题十分有力的工具,除开DP外,也要时刻应用。
2、在线难以处理时,考虑离线。正序难以处理时,考虑倒序。无序难以处理时,考虑有序。因为后者往往在一定程度上满足无后效性。
【线段树】【P3740】 [HAOI2014]贴海报的更多相关文章
- 【题解】Luogu P3740 [HAOI2014]贴海报
woc,今天已经是day -1了 再写一颗珂朵莉树来++rp吧 否则就要AFO了qaq 这有可能是我最后一篇题解/博客qaq 原题传送门:P3740 [HAOI2014]贴海报 考前刷水题到底是对还是 ...
- Luogu P3740 [HAOI2014]贴海报_线段树
线段树版的海报 实际上这个与普通的线段树相差不大,只是貌似数据太水,暴力都可以过啊 本来以为要离散的,结果没打就A了 #include<iostream> #include<cstd ...
- Luogu P3740 [HAOI2014] 贴海报 线段树
线段树版的海报 实际上这个与普通的线段树相差不大,只是貌似数据太水,暴力都可以过啊 本来以为要离散的,结果没打就A了 #include<iostream> #include<cstd ...
- BZOJ 5168 && Luogu P3740 [HAOI2014]贴海报 线段树~~
据说某谷数据十分水...但幸好BZOJ上也过了...话说我记得讲课时讲的是奇奇怪怪的离散化..但现在突然觉得什么都可以线段树瞎搞了...QAQ 直接就是这个区间有没有被覆盖,被覆盖直接return: ...
- poj 2528(线段树+离散化) 市长的海报
http://poj.org/problem?id=2528 题目大意是市长竞选要贴海报,给出墙的长度和依次张贴的海报的长度区间(参考题目给的图),问最后你能看见的海报有几张 就是有的先贴的海报可能会 ...
- 洛谷P3740 [HAOI2014]贴海报
题目描述 Bytetown城市要进行市长竞选,所有的选民可以畅所欲言地对竞选市长的候选人发表言论.为了统一管理,城市委员会为选民准备了一个张贴海报的electoral墙. 张贴规则如下: electo ...
- 洛谷 P3740 [HAOI2014]贴海报
题目描述 Bytetown城市要进行市长竞选,所有的选民可以畅所欲言地对竞选市长的候选人发表言论.为了统一管理,城市委员会为选民准备了一个张贴海报的electoral墙. 张贴规则如下: electo ...
- P3740 [HAOI2014]贴海报
题目描述 Bytetown城市要进行市长竞选,所有的选民可以畅所欲言地对竞选市长的候选人发表言论.为了统一管理,城市委员会为选民准备了一个张贴海报的electoral墙. 张贴规则如下: electo ...
- 【文文殿下】P3740 [HAOI2014]贴海报
题解 一开始想到离散化,然后暴力模拟.但是存在一种hack数据: [5,7] [1,5] [7,9] 这样会错误的认为第一个区间被覆盖了(因为两个端点被覆盖).所以我们设置一个玄学调参系数,在一个区间 ...
随机推荐
- Fiddler使用总结(一)
Fiddler基础知识 .Fiddler是强大的抓包工具,它的原理是以web代理服务器的形式进行工作的,使用的代理地址是:127.0.0.1,端口默认为8888,我们也可以通过设置进行修改. .代理就 ...
- Python-S9——Day82-CRM项目实战
1.权限的概念: 2.RBAC的设计: 3.注册登录用户所有权限到session中: 4.权限的校验: 5.基于中间件的权限校验: 1.权限的概念: 1.1 项目与应用: Project App 1. ...
- Qt Creator 下启动vim模式后,运行快捷键Ctrl+R失效解决方案
首先开启vim后,Ctrl+R无法用 解决: 工具 -> 选项->FakeVim 转到Ex Command Mapping 搜索Run 底栏Regular expression 输入run ...
- python numpy数据相减
numpy数据相减,a和b两者shape要一样,然后是对应的位置相减.要不然,a的shape可以是(1,m),注意m要等于b的列数. import numpy as np a = [ [0, 1, 2 ...
- 解决jQuery不同版同时引用的冲突
今天研发的同事在开发一个新jQuery插件时,遇到一个揪心的问题.平台以前使用的 jQuery版本是1.2.6,偶,天啊!这是古代的版本啊! 由于很多功能基于老版本,不能删除啊,同志们都懂的! 于是我 ...
- Alpha版——版本控制报告(Thunder)
Part One 回答问题: 0.在吹牛之前,先回答这个问题:如果你的团队来了一个新队员,有一台全新的机器,你们是否有一个文档,只要设置了相应的权限,她就可以根据文档,从头开始搭建环境,并成功地把最新 ...
- Mac OS安装Scrapy失败
报错: DEPRECATION: Uninstalling a distutils installed project (six) has been deprecated and will be re ...
- LintCode-50.数组剔除元素后的乘积
数组剔除元素后的乘积 给定一个整数数组A. 定义B[i] = A[0] * ... * A[i-1] * A[i+1] * ... * A[n-1], 计算B的时候请不要使用除法. 样例 给出A=[1 ...
- Linux 路由 学习笔记 之一 相关的数据结构
http://blog.csdn.net/lickylin/article/details/38326719 从现在开始学习路由相关的代码,在分析代码之前, 我们还是先分析数据结构,把数据结构之间的关 ...
- vue服务端渲染简单入门实例
想到要学习vue-ssr的同学,自不必多说,一定是熟悉了vue,并且多多少少做过几个项目.然后学习vue服务端渲染无非解决首屏渲染的白屏问题以及SEO友好. 话不多说,笔者也是研究多日才搞明白这个服务 ...