deep learning3
9.3、Restricted Boltzmann Machine (RBM)受限玻尔兹曼基
假设有一个二部图,每一层的节点之间没有链接,一层是可视层,即输入数据层(v),一层是隐藏层(h),如果假设所有的节点都是随机二值变量节点(只能取0或者1值),同时假设全概率分布p(v,h)满足Boltzmann 分布,我们称这个模型是Restricted BoltzmannMachine (RBM)。
下面我们来看看为什么它是Deep Learning方法。首先,这个模型因为是二部图,所以在已知v的情况下,所有的隐藏节点之间是条件独立的(因为节点之间不存在连接),即p(h|v)=p(h1|v)…p(hn|v)。同理,在已知隐藏层h的情况下,所有的可视节点都是条件独立的。同时又由于所有的v和h满足Boltzmann分布,因此,当输入v的时候,通过p(h|v) 可以得到隐藏层h,而得到隐藏层h之后,通过p(v|h)又能得到可视层,通过调整参数,我们就是要使得从隐藏层得到的可视层v1与原来的可视层v如果一样,那么得到的隐藏层就是可视层另外一种表达,因此隐藏层可以作为可视层输入数据的特征,所以它就是一种Deep Learning方法。
如何训练呢?也就是可视层节点和隐节点间的权值怎么确定呢?我们需要做一些数学分析。也就是模型了。
联合组态(jointconfiguration)的能量可以表示为:
而某个组态的联合概率分布可以通过Boltzmann 分布(和这个组态的能量)来确定:
因为隐藏节点之间是条件独立的(因为节点之间不存在连接),即:
然后我们可以比较容易得到在给定可视层v的基础上,隐层第j个节点1或者0的概率:
同理,在给定隐层h的基础上,可视层第i个节点为1或者为0的概率也可以容易获得:
给定一个满足独立同分布的样本集:D={v(1), v(2),…, v(N)},我们需要学习参数θ={W,a,b}。
我们最大化以下对数似然函数(最大似然估计:对于某个概率模型,我们需要选择一个参数,让我们当前的观测样本的概率最大)
也就是对最大对数似然函数求导,就可以得到L最大时对应的参数W了。
如果我们把隐藏层的层数增加,我们可以得到Deep Boltzman Machine(DBM);如果我们在靠近可视层的部分使用贝叶斯信念网络(即有向图模型,这里依然限制层中节点之间没有连接),而在最远离可视层的部分使用Restricted Boltzmann Machine,我们可以得到DeepBelief Net(DBN)。
9.4、Deep Belief Networks深信度网络
DBNs是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。对于在深度神经网络应用传统的BP算法的时候,DBNs遇到了以下问题:
(1)需要为训练提供一个有标签的样本集;
(2)学习过程较慢;
(3)不适当的参数选择会导致学习收敛于局部最优解。
DBNs由多个受限玻尔兹曼基层组成,一个典型的神经网络如下图所示
这些网络被限制为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。
首先,先不考虑最顶构成一个联想记忆(associative memory)的两层,一个DBN的连接是通过自顶向下的生成权值来指导确定的,RBMs就像一个建筑块一样,相比传统和深度分层的sigmoid信念网络,它能易于连接权值的学习。
最开始的时候,通过一个非监督贪婪逐层方法去预训练获得生成模型的权值,非监督贪婪逐层方法被Hinton证明是有效的,并被其称为对比分歧(contrastive divergence)。
在这个训练阶段(一)、在可视层会产生一个向量v,通过它将值传递到隐层。
(二)、反过来,可视层的输入会被随机的选择,以尝试去重构原始的输入信号。
(三)、最后,这些新的可视的神经元激活单元将前向传递重构隐层激活单元,获得h
(在训练过程中,首先将可视向量值映射给隐单元;然后可视单元由隐层单元重建;这些新可视单元再次映射给隐单元,这样就获取新的隐单元。执行这种反复步骤叫做吉布斯采样)。
这些后退和前进的步骤就是我们熟悉的Gibbs采样,而隐层激活单元和可视层输入之间的相关性差别就作为权值更新的主要依据。
训练时间会显著地减少,因为只需要单个步骤就可以接近最大似然学习。增加进网络的每一层都会改进训练数据的对数概率,我们可以理解为越来越接近能量的真实表达。这个有意义的拓展,和无标签数据的使用,是任何一个深度学习应用的决定性的因素。
在最高两侧,权值被连接到一起,这样更低层的输出将会提供一个参考的线索或者关联给顶层,这样顶层就会将其联系到它的记忆内容。而我们最关心的,最后想得到的就是判别性能,例如分类任务里面。
在预训练后,DBN可以通过利用带标签数据用BP算法去对判别性能做调整。在这里,一个标签集
将被附加到顶层(推广联想记忆),通过一个自下向上的,学习到的识别权值获得一个网络的分类面。这个性能会比单纯的BP算法训练的网络好。这可以很直观的解释,DBNs的BP算法只需要对权值参数空间进行一个局部的搜索,这相比前向神经网络来说,训练是要快的,而且收敛的时间也少。
DBNs的灵活性使得它的拓展比较容易。一个拓展就是卷积DBNs(Convolutional Deep Belief Networks(CDBNs))。DBNs并没有考虑到图像的2维结构信息,因为输入是简单的从一个图像矩阵一维向量化的。而CDBNs就是考虑到这个问题,它利用邻域像素的空域关系,通过一个称为卷积RBMs的模型达到生成模型的变换不变性,而且可以容易得变换到高维图像。DBNs并没有明确地处理对观察变量的时间联系的学习上,虽然目前已经有这方面的研究,例如堆叠时间RBMs,以此为推广,有序列学习的dubbed temporal convolutionmachines,这种序列学习的应用,给语音信号处理问题带来了一个让人激动的未来研究方向。
目前,和DBNs有关的研究包括堆叠自动编码器,它是通过用堆叠自动编码器来替换传统DBNs里面的RBMs。这就使得可以通过同样的规则来训练产生深度多层神经网络架构,但它缺少层的参数化的严格要求。与DBNs不同,自动编码器使用判别模型,这样这个结构就很难采样输入采样空间,这就使得网络更难捕捉它的内部表达。但是,降噪自动编码器却能很好的避免这个问题,并且比传统的DBNs更优。它通过在训练过程添加随机的污染并堆叠产生场泛化性能。训练单一的降噪自动编码器的过程和RBMs训练生成模型的过程一样。
deep learning3的更多相关文章
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- Deep learning:五十一(CNN的反向求导及练习)
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...
- Deep Residual Learning
最近在做一个分类的任务,输入为3通道车型图片,输出要求将这些图片对车型进行分类,最后分类类别总共是30个. 开始是试用了实验室师姐的方法采用了VGGNet的模型对车型进行分类,据之前得实验结果是训练后 ...
- 《Neural Network and Deep Learning》_chapter4
<Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...
- 基于Deep Learning 的视频识别方法概览
深度学习在最近十来年特别火,几乎是带动AI浪潮的最大贡献者.互联网视频在最近几年也特别火,短视频.视频直播等各种新型UGC模式牢牢抓住了用户的消费心里,成为互联网吸金的又一利器.当这两个火碰在一起,会 ...
- [WPF系列]-Deep Zoom
参考 Deep Zoom in Silverlight
- C# Bitmap deep copy
今天在研究一个关于 Bitmap deep copy 的问题, 经过一系列的查询,在StackOverFlow上面找到了答案,遂记录下来: public static Bitmap DeepCopyB ...
- Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...
- paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...
随机推荐
- TCP/IP协议族、版本以及编址机制
TCP/IP协议族简称TCP/IP.这么命名是因为该协议家族中的两个核心协议:TCP(传输控制协议)和IP(网际协议),为该家族中最早通过的标准.TCP/IP提供点对点的链接机制,将数据应该如何封装, ...
- 破解使用SMB协议的Windows用户密码:acccheck
一.工作原理 Acccheck是一款针对微软的SMB协议的探测工具(字典破解用户名和密码),本身不具有漏洞利用的能力. SMB协议:SMB(Server Message Block)通信协议主要是作为 ...
- web之前端获取上传图片并展示
1.html中经常存在图片上传的问题,但是后续的展示基本上是通过后台输出流的方式来呈现的.但是这样耗费的资源比较多.所以这里学习了一种前端直接展示图片的方式(供参考). 2.html的编写方式比较简单 ...
- STM32的System memory
Main Flash memory 是STM32内置的Flash,一般我们使用JTAG或者SWD模式下载程序时,就是下载到这个里面,重启后也直接从这启动程序. System memory 从系统存储器 ...
- C++中的引用常见用法
1.引用的内涵 引用就是给变量取外号而已. 2.四种不能使用引用的情况 void &r=x; //不能建立void类型引用 int &&r=x; //不能建立引用的引用 int ...
- hdu1069Monkey and Banana(动态规划)
Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HTMLTestRunner.py(Python3)
"""A TestRunner for use with the Python unit testing framework. Itgenerates a HTML re ...
- GameplayKit的GKStateMachine用法与实例
GKStateMachine 玩家进入GameScene场景中 -> 通过GKStateMachine进入到指定的游戏状态GKState 在GameScene场景中 -> 根据不同的逻辑调 ...
- 悲剧文本(Broken Keyboard (a.k.a. Beiju Text),UVA 11988)
题目描述: 题目思路: 1.使用链表来重新定位各个字符 2.用数组实现链表 3.开一个数组list[i]来存储字符数组下一个字符的位置 #include <iostream> #inclu ...
- Android开发-API指南-<uses-permission>
<uses-permission> 英文原文:http://developer.android.com/guide/topics/manifest/uses-permission-elem ...