Codeforces 550C —— Divisibility by Eight——————【枚举 || dp】
2 seconds
256 megabytes
standard input
standard output
You are given a non-negative integer n, its decimal representation consists of at most 100 digits and doesn't contain leading zeroes.
Your task is to determine if it is possible in this case to remove some of the digits (possibly not remove any digit at all) so that the result contains at least one digit, forms a non-negative integer, doesn't have leading zeroes and is divisible by 8. After the removing, it is forbidden to rearrange the digits.
If a solution exists, you should print it.
The single line of the input contains a non-negative integer n. The representation of number n doesn't contain any leading zeroes and its length doesn't exceed 100 digits.
Print "NO" (without quotes), if there is no such way to remove some digits from number n.
Otherwise, print "YES" in the first line and the resulting number after removing digits from number n in the second line. The printed number must be divisible by 8.
If there are multiple possible answers, you may print any of them.
3454
YES
344
10
YES
0
111111
NO 题目大意:给你一个数字字符串,没有前导零。问你是否可以挑出几个数字(相对顺序不变)组成一个新的数字,要求能被8整除。如果存在,输出“YES”并且把该数输出。否则,输出“NO”。 解题思路:我们可以知道,10^3的倍数都可以被8整除。所以我们只要我们枚举判断最多3位数时能否被8整除即可。所以就是O(len^3)。
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<string>
#include<iostream>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
using namespace std;
typedef long long LL;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson rt*2+1,mid+1,R
#pragma comment(linker, "/STACK:102400000,102400000")
const int maxn = 1e5 + 300;
const int INF = 0x3f3f3f3f;
typedef long long LL;
typedef unsigned long long ULL;
char s[200];
int main(){
while(scanf("%s",s+1)!=EOF){
int len = strlen(s+1);
int num , num1, num2, ans;
int flag = 0;
for(int i = 1; i <= len; i++){
if(flag) break;
num = s[i] - '0';
if(num % 8 == 0){
ans = num;
flag = 1; break;
}
for(int j = i+1; j <= len; j++){
if(flag) break;
num1 = num * 10;
num1 = num1 + s[j] - '0';
if(num1 % 8 == 0){
ans = num1;
flag = 1; break;
}
for(int k = j+1; k <= len; k++){
num2 = num1 * 10;
num2 = num2 + s[k] - '0';
if(num2 % 8 == 0){
ans = num2;
flag = 1;
break;
}
}
}
}
if(flag){
puts("YES"); printf("%d\n",ans);
}else{
puts("NO");
}
}
return 0;
}
题解中还有一种更好的复杂度。但是所给的dp转移方程不太明白,有机会再看看。
http://codeforces.com/blog/entry/18329
Codeforces 550C —— Divisibility by Eight——————【枚举 || dp】的更多相关文章
- [Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT)
[Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT) 题面 给出一个\(n\)个点\(m\)条边的有向图(可能有环),走每条边需要支付一个价格\(c_i ...
- [Codeforces 865C]Gotta Go Fast(期望dp+二分答案)
[Codeforces 865C]Gotta Go Fast(期望dp+二分答案) 题面 一个游戏一共有n个关卡,对于第i关,用a[i]时间通过的概率为p[i],用b[i]通过的时间为1-p[i],每 ...
- [CodeForces - 1225E]Rock Is Push 【dp】【前缀和】
[CodeForces - 1225E]Rock Is Push [dp][前缀和] 标签:题解 codeforces题解 dp 前缀和 题目描述 Time limit 2000 ms Memory ...
- codeforces 629C Famil Door and Brackets (dp + 枚举)
题目链接: codeforces 629C Famil Door and Brackets 题目描述: 给出完整的括号序列长度n,现在给出一个序列s长度为m.枚举串p,q,使得p+s+q是合法的括号串 ...
- Codeforces Round #191 (Div. 2) A. Flipping Game【*枚举/DP/每次操作可将区间[i,j](1=<i<=j<=n)内牌的状态翻转(即0变1,1变0),求一次翻转操作后,1的个数尽量多】
A. Flipping Game time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces 834E The Bakery【枚举+数位dp】
E. Ever-Hungry Krakozyabra time limit per test:1 second memory limit per test:256 megabytes input:st ...
- codeforces Diagrams & Tableaux1 (状压DP)
http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...
- Codeforces Round #543 (Div. 2) F dp + 二分 + 字符串哈希
https://codeforces.com/contest/1121/problem/F 题意 给你一个有n(<=5000)个字符的串,有两种压缩字符的方法: 1. 压缩单一字符,代价为a 2 ...
- Educational Codeforces Round 1 E. Chocolate Bar dp
题目链接:http://codeforces.com/contest/598/problem/E E. Chocolate Bar time limit per test 2 seconds memo ...
随机推荐
- MVVM ICommand.CanExecute parameter is null
CommandParameter="{Binding}" 改为 CommandParameter="{Binding DataContext,RelativeSource ...
- 转:javascript判断IE浏览器
http://blog.csdn.net/ranbolwb/article/details/18555847 function isIE() { //ie? if (!!window.ActiveXO ...
- Windows store app[Part 4]:深入WinRT的异步机制
接上篇Windows store app[Part 3]:认识WinRT的异步机制 WinRT异步机制回顾: IAsyncInfo接口:WinRT下异步功能的核心,该接口提供所有异步操作的基本功能,如 ...
- [Asp.net Mvc]为js,css静态文件添加版本号
方式一: 思路 string version = ViewBag.Version; @Scripts.RenderFormat("<script type=\"text/ja ...
- 手把手带你打造一个 Android 热修复框架
本文来自网易云社区 作者:王晨彦 Application 处理 上面我们已经对所有 class 文件插入了 Hack 的引用,而插入 dex 是在 Application 中,Application ...
- cannot be resolved to a type (Java)
最近经常遇到cannot be resolved to a type (Java)报错,以下为在网上找到的解决方案: 1.先看看有没有引用相关jar包2.检查jar是否引用了多个相同的,或者多个jar ...
- [AIR] AS3读取txt文档
package { import flash.display.Sprite; import flash.events.Event; import flash.filesystem.File; impo ...
- [ActionScript 3.0] 判断XML属性是否存在
在as3中判断xml节点是否存在以及判断xml某节点是否存在某属性可用下面方法: if(xml.hasOwnProperty("frameRate")){ trace(" ...
- SpringBoot 启动的时候提示 Field *** in *** required a bean named 'entityManagerFactory' that could not be found.
错误截图 后面发现原来和入口类代码有关. //@SpringBootApplication(scanBasePackages = {"org.jzc.odata.cboard",& ...
- python脚本中appium的自启动自关闭
前提:已安装appium命令行版本 将appium的启动及其关闭直接写在脚本中,运行起来会方便很多 创建startAppiumServer.bat 和 stopAppiumServer.bat文件,然 ...