LCARS: A Location-Content-Aware Recommender System
Authors: Hongzhi Yin, Peking University; Yizhou Sun, ; Bin Cui, Peking University; Zhiting Hu, ; Ling Chen
FISM: Factored Item Similarity Models for Top-N Recommender Systems
Santosh Kabbur, University of Minnesota; George Karypis, University of Minnesota
Making Recommendations from Multiple Domains
Wei Chen, National University of Singapore; Wynne Hsu, National University of Singapore; Mong-Li Lee, National University of Singapore
Combining Latent Factor Model with Location Features for Event-based Group Recommendation
Wei Zhang, Department of Computer Science; Jianyong Wang, Tsinghua University
A New Collaborative Filtering Approach for Increasing the Aggregate Diversity of Recommender Systems
Katja Niemann, Fraunhofer FIT; Martin Wolpers, Fraunhofer Institute for Applied Information Technology
Silence is also evidence: Interpreting dwell time for recommendation from Psychological Perspective
Peifeng Yin, Pennsylvania State University; Ping Luo, HP Lab; Wang-Chien Lee, ; Min Wang, Google Research
Learning Geographical Preferences for Point-of-Interest Recommendation
Bin Liu, Rutgers Univ; Yanjie Fu, Rutgers University; ZIjun Yao, Rutgers Univ; Hui Xiong, Rutgers, the State University of New Jersey
Collaborative Matrix Factorization with Multiple Similarities for Predictin Drug-Target Interactions
Xiaodong Zheng, Fudan University; Hao Ding, Fudan University; Hiroshi Mamitsuka, Kyoto University; Shanfeng Zhu, Fudan University

有20多篇是有关社会网分析的

Unsupervised Link Prediction Using Aggregative Statistics on Heterogeneous Social Networks
Tsung-Ting Kuo, National Taiwan University; Rui Yan, Peking University; Yu-Yang Huang, National Taiwan University; Perng-Hwa Kung, National Taiwan University; Shou-De Lin, National Taiwan University
Link Prediction with Social Vector Clocks
Conrad Lee, University College Dublin; Bobo Nick, Konstanz UniversitŠt; Ulrik Brandes, Konstanz UniversitŠt; P‡draig Cunningham, University College Dublin

KDD 2013推荐系统论文的更多相关文章

  1. CIKM 2013推荐系统论文总结

    这几天在家没事,介绍几篇CIKM上关于推荐系统的文章, Personalized Influence Maximization on Social Networks Social Recommenda ...

  2. 计算广告、推荐系统论文以及DSP综述

    http://www.huxmarket.com/detail/2966 DSP场景假定前提: 以CTR预估为例,向广告主以CPC(OCPC)方式收费,向ADX以CPM方式付费.投放计划受预算限制,在 ...

  3. 【推荐系统论文笔记】Introduction To Recommender Systems: Algorithms and Evaluation

    这篇论文比较短,正如题目所说,主要还是简单地介绍了一下推荐系统的一些算法以及评估的方法. 推荐系统之前是基于关键字信息的过滤系统,后来发展成为协同过滤系统,解决了两个问题:1.通过人工审核去评价那些具 ...

  4. KDD 2018 | 最佳论文:首个面向Facebook、arXiv网络图类的对抗攻击研究

    8 月 19 日至 23 日,数据挖掘顶会 KDD 2018 在英国伦敦举行,昨日大会公布了最佳论文等奖项.最佳论文来自慕尼黑工业大学的研究者,他们提出了针对图深度学习模型的对抗攻击方法,是首个在属性 ...

  5. 推荐系统论文之序列推荐:KERL

    KERL: A Knowledge-Guided Reinforcement Learning Modelfor Sequential Recommendation 摘要 ‍时序推荐是基于用户的顺序行 ...

  6. CVPR 2013 录用论文【待更新】

    完整录用论文官方链接:http://www.pamitc.org/cvpr13/program.php 过段时间CvPaper上面应该会有正文链接 今年有关RGB-D摄像机应用和研究的论文渐多起来了. ...

  7. DLRS(近三年深度学习应用于推荐系统论文汇总)

    Recommender Systems with Deep Learning Improving Scalability of Personalized Recommendation Systems ...

  8. WSDM 2014推荐系统论文

    Xiao Yu, Hao Ma, Paul Hsu, Jiawei Han On Building Entity Recommender Systems Using User Click Log an ...

  9. DLRS(深度学习应用于推荐系统论文汇总--2017年8月整理)

    Recommender Systems with Deep Learning Alessandro:ADAAlessandro Suglia, Claudio Greco, Cataldo Musto ...

随机推荐

  1. ubuntu系统复制到其他地方或克隆后,如何正确修改IP及MAC地址的解决方案(图文详解)

    修改ip地址 永久修改MAC地址 方法一: 1)编辑“/etc/init.d/rc.local”文件(sudo gedit /etc/init.d/rc.local) 2)在此配置文件的最后面加上如( ...

  2. java中String,StringBuffer与StringBuilder的区别??

    本文着重介绍下,应该在何时恰当的使用string,stringbuffer,stringbuilder. 1,执行速度 StringBuilder >  StringBuffer  >  ...

  3. TCP连接管理(TCP Connection Management)

    在最近的求职面试过程中,关于"建立TCP连接的三次握手"不止一次被问到了,虽然我以前用同样的问题面试过别人,但感觉还是不能给面试官一个很清晰的回答.本文算是对整个TCP连接管理做一 ...

  4. 为 “超级大脑”构建支撑能力,腾讯云聚焦AI技术落地

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 5月24日,以"无界数据.无限智能"为主题的2018腾讯"云+未来"峰会AI大数据分论坛在广州拉开帷 ...

  5. [转载+补充][PY3]——环境配置(2)——windows下安装pycharm并连接Linux的python环境

    原文地址:<你所会用到的Python学习环境和工具> 1. 下载安装Pycharm专业版 具体方法略.Pycharm5激活方法参考http://www.cnblogs.com/snsdzj ...

  6. java 如何下载jar包

    随着maven工具的使用,我们已经不再需要辛苦的找jar包,也不需要再买会员去下载jar包,但是还有一些同学,不知道怎么下载jar包,下面我给大家介绍一下,如何潇洒的找到自己想要的jar包. 首先,访 ...

  7. SSRS 通过Customer Code访问Dataset

    A dataset in Reporting Services is not the same type of object as an ADO.Net dataset.  A report data ...

  8. RUP 4+1视图

    RUP开篇之作:http://www.ibm.com/developerworks/cn/rational/r-4p1-view/index.html 百科:http://baike.baidu.co ...

  9. Hadoop实战之三~ Hello World

    本文介绍的是在Ubuntu下安装用三台PC安装完成Hadoop集群并运行好第一个Hello World的过程,软硬件信息如下: Ubuntu:12.04 LTS Master: 1.5G RAM,奔腾 ...

  10. 一 NIO的概念

    Java NIO由下列几个核心部分组成: Channels(通道) Buffers(缓冲区) Asynchronous IO(异步IO) Channel 和 Buffer 基本上所有的IO在NIO中都 ...