Luogu P2016 战略游戏(树形DP)
题解
设$f[u][0/1/2]$表示当前节点$u$,放或不放($0/1$)时其子树满足题目要求的最小代价,$2$表示$0/1$中的最小值。
则有:
$$
f[u][0]=\sum_{v\in son[u]}f[v][1]\
f[u][1]=\sum_{v\in son[u]}f[v][2]\
f[u][2]=min(f[u][0],f[u][1])
$$
$O(n)$即可
PS:作者在写代码时忘记找根节点了,但是数据太水,默认$0$为根节点了。在写这种题时记得寻找根节点!!
代码
#include <cstdio>
#include <algorithm>
using std::min;
typedef long long ll;
const int N = 1.5e3 + 10, Inf = 1e9 + 7;
int n, f[N][3];
int cnt, from[N], to[N], nxt[N];//Edges
inline void addEdge(int u, int v) {
to[++cnt] = v, nxt[cnt] = from[u], from[u] = cnt;
}
void dp(int u) {
f[u][1] = 1, f[u][0] = 0;
for(int i = from[u], v; i; i = nxt[i])
v = to[i], dp(v), f[u][1] += f[v][2], f[u][0] += f[v][1];
f[u][2] = min(f[u][1], f[u][0]);
}
int main () {
scanf("%d", &n);
for(int i = 1, u, tot; i <= n; ++i) {
scanf("%d%d", &u, &tot);
for(int j = 1, v; j <= tot; ++j)
scanf("%d", &v), addEdge(u, v);
}
dp(0);
printf("%d\n", f[0][2]);
return 0;
}
Luogu P2016 战略游戏(树形DP)的更多相关文章
- P2016 战略游戏——树形DP大水题
P2016 战略游戏 树形DP 入门题吧(现在怎么是蓝色标签搞不懂): 注意是看见每一条边而不是每一个点(因为这里错了好几次): #include<cstdio> #include< ...
- [洛谷P2016] 战略游戏 (树形dp)
战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...
- P2016 战略游戏 (树形DP)
题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能 ...
- $loj10156/$洛谷$2016$ 战略游戏 树形$DP$
洛谷loj Desription Bob 喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的方法.现在他有个问题. 现在他有座古城堡,古城堡的路形成一棵树.他要在这棵树的节点上放置最少数 ...
- 【题解】Luogu p2016 战略游戏 (最小点覆盖)
题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能 ...
- luogu P2016 战略游戏
嘟嘟嘟 树形dp水题啦. 刚开始以为和[SDOI2006]保安站岗这道题一样,然后交上去WA了. 仔细想想还是有区别的,一个是能看到相邻点,一个是能看到相邻边.对于第一个,可以(u, v)两个点都不放 ...
- 洛谷P2016 战略游戏
P2016 战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目 ...
- 洛谷P2016战略游戏
传送门啦 战略游戏这个题和保安站岗很像,这个题更简单,这个题求的是士兵人数,而保安站岗需要求最优价值. 定义状态$ f[u][0/1] $ 表示 $ u $ 这个节点不放/放士兵 根据题意,如果当前节 ...
- 邱老师玩游戏(树形DP) UESTC - 1136
邱老师最近在玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中邱老师允许攻克M个城堡并获得里面的宝物. 但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先攻克其 ...
随机推荐
- 图论:最短路-Bellman-Ford
我们之前介绍了一种,(最常用的)SPFA算法,SPFA算法是对Bellman-Ford算法的队列优化,用队列替代了Bellman-Ford中的循环检查部分 然后这里我们介绍Bellman-Ford算法 ...
- 2015/9/19 Python基础(15):变量作用域及生成器
变量作用域标识符的作用域是定义为其声明的可应用范围,或者即是我们所说的变量可见性.也就是,我们可以在程序的那个部分去访问一个制定的标识符.全局变量与局部变量定义在函数内的变量有局部作用域,在一个模块中 ...
- 通过.NET客户端异步调用Web API(C#)
在学习Web API的基础课程 Calling a Web API From a .NET Client (C#) 中,作者介绍了如何客户端调用WEB API,并给了示例代码. 但是,那些代码并不是非 ...
- HDU 1422 重温世界杯 (dp)
题目链接 Problem Description 世界杯结束了,意大利人连本带利的收回了法国人6年前欠他们的债,捧起了大力神杯,成就了4星意大利. 世界杯虽然结束了,但是这界世界杯给我们还是留下许多值 ...
- bzoj 3453 数论
首先我们知道对于f(x)来说,它是一个k次的多项式,那么f(x)的通项公式可以表示成一个k+1次的式子,且因为f(x)没有常数项,所以我们设这个式子为 f(x)=Σ(a[i]*x^i) (1<= ...
- perl HTML::HeadParser获取html头部信息
use LWP::Simple; use HTML::HeadParser; use utf8; binmode(STDOUT, ":encoding(gbk)"); #设置win ...
- 【Python学习】Jupyter解决单个变量输出问题
使用Jupyter的时候有时候发现,我明明写了好几个变量打印,但是它只显示最后一个.Out只有一个. 但是使用下面的语句.就可以实现多个输出. from IPython.core.interactiv ...
- centos_7.1.1503_src_4
http://vault.centos.org/7.1.1503/os/Source/SPackages/ libkcompactdisc-4.10.5-3.el7.src.rpm 05-Jul-20 ...
- python 使用国内源安装软件
python linux 等 使用国内源安装软件 速度更快 你值得拥有 ! 豆瓣源:pip install -i https://pypi.douban.com/simple/ 阿里源:pip ins ...
- 使用 Visual Studio 部署 .NET Core 应用 ——.Net Core 部署到SUSE Linux Enterprise Server 12 SP2 64 位(GNOME 版本3.20.2)
SUSE Linux安装 apache 命令:sudo zypper in apache 设置apache 服务可用 命令:sudo systemctl enable apache2.service启 ...