【题目大意】给定一个n*m的土地,每块可以种a或b作物,每种作物在不同的位置有不同的收成,同时,有q个子矩阵中,全部种指定的作物(a或b)会有一定的加成收成,求最大收成。  

  【数据范围】

    50% n,m<=10 q<=500

    100% n,m<=100 q<=50000

  首先我们解决小范围数据,比较容易的可以看出来这是一个最小割模型,先将ans+=value。我们只需要(source,i,value[i][0]),表示不种植a的代价,(i,sink,value[i][1])表示不种植b的代价。对于额外的加成,如果全是b作物,我们可以表示为(x,cur,inf),(cur,sink,value) x为矩阵中的所有点,这个表示我们只要矩阵中的任意一个元素没有种植b(也就是某个点割得与sink相连的边),那么我们都可以找到一条新的增广路,流量为value。

  那么我们可以发现,这种建模的边是n*m*q级别的,因为每次我们新的cur点都与矩阵中所有的点连接了,我们需要来增加图的点的数量来减少边的数量,那么我们可以用二维st表来表示每个矩阵中的点,num[i][j][p][q]表示矩阵中i,j点为左上角,长为2^p,宽为2^q的矩阵,我们将图拆为a,b两层,分别表示a,b作物的矩阵。

  因为新加入的点是为了简化之前的图的,所以我们同层的st表之间的边应该与之前连接的边的方向相同,因为我们这样做相当与把原图拆成了两部分,原图的两部分之间是互通的,所以我们也应该将两层st表之间加上双向边,如果不加这个的话,会出现由于额外价值过大导致割了连接源和汇的边而保留两个附加收成的点,这样当然是不合法的。

  反思:开始建的是正方形的st表,后来发现了这种建发的诸多不便,这样不能保证图的规模,因为条形的矩阵可以卡掉这个。然后开始的图没有两层之间双向连边,所以导致了些奇奇怪怪的问题(也不奇怪,就是上述的不合法割边)。

//By BLADEVIL
#include <cstdio>
#include <cstring>
#include <algorithm>
#define maxm 2000010
#define maxn 110
#define inf (1000000000) using namespace std; int n,m,query;
int source,sink,tot,l;
int key[maxn][maxn][],num[maxn][maxn][][][];
int pre[maxm],other[maxm],last[maxm],len[maxm];
int que[maxm],dis[maxm]; void connect(int x,int y,int z) {
pre[++l]=last[x];
last[x]=l;
other[l]=y;
len[l]=z;
//printf("|%d %d %d\n",x,y,z);
} bool bfs() {
memset(dis,,sizeof dis);
que[]=source; dis[source]=;
int h=,t=;
while (h<t) {
int cur=que[++h];
for (int p=last[cur];p;p=pre[p]) {
if (len[p]<=) continue;
if (!dis[other[p]]) {
que[++t]=other[p];
dis[other[p]]=dis[cur]+;
if (other[p]==sink) return true;
}
}
}
return false;
} int dinic(int x,int flow) {
//printf("%d %d\n",x,flow);
if (x==sink) return flow;
int rest=flow;
for (int p=last[x];p;p=pre[p]) {
if (len[p]<=) continue;
if (!rest) continue;
if (dis[other[p]]!=dis[x]+) continue;
int tmp=dinic(other[p],min(rest,len[p]));
len[p]-=tmp; len[p^]+=tmp; rest-=tmp;
}
return flow-rest;
} int main() {
freopen("d.in","r",stdin); freopen("d.out","w",stdout);
scanf("%d%d%d",&n,&m,&query);
for (int i=;i<=n;i++)
for (int j=;j<=m;j++) scanf("%d",&key[i][j][]);
for (int i=;i<=n;i++)
for (int j=;j<=m;j++) scanf("%d",&key[i][j][]);
l=;
for (int p=;(<<p)<=n;p++)
for (int q=;(<<q)<=m;q++)
for (int i=;i+(<<p)-<=n;i++)
for (int j=;j+(<<q)-<=m;j++) {
num[i][j][p][q][]=++tot; num[i][j][p][q][]=++tot;
}
source=++tot; sink=++tot;
int ans=;
for (int i=;i<=n;i++)
for (int j=;j<=m;j++) {
connect(source,num[i][j][][][],key[i][j][]); connect(num[i][j][][][],source,);
connect(num[i][j][][][],sink,key[i][j][]); connect(sink,num[i][j][][][],);
ans+=key[i][j][]+key[i][j][];
}
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
connect(num[i][j][][][],num[i][j][][][],inf),connect(num[i][j][][][],num[i][j][][][],);
for (int p=;(<<p)<=n;p++)
for (int q=;(<<q)<=m;q++)
for (int i=;i+(<<p)-<=n;i++)
for (int j=;j+(<<q)-<=m;j++) {
connect(num[i][j][p][q][],num[i][j][p][q][],inf);connect(num[i][j][p][q][],num[i][j][p][q][],);
if (q) {
connect(num[i][j][p][q][],num[i][j][p][q-][],inf); connect(num[i][j][p][q-][],num[i][j][p][q][],);
connect(num[i][j][p][q][],num[i][j+(<<(q-))][p][q-][],inf); connect(num[i][j+(<<(q-))][p][q-][],num[i][j][p][q][],);
connect(num[i][j][p][q-][],num[i][j][p][q][],inf); connect(num[i][j][p][q][],num[i][j][p][q-][],);
connect(num[i][j+(<<(q-))][p][q-][],num[i][j][p][q][],inf); connect(num[i][j][p][q][],num[i][j+(<<(q-))][p][q-][],);
} else
if (p) {
connect(num[i][j][p][q][],num[i][j][p-][q][],inf); connect(num[i][j][p-][q][],num[i][j][p][q][],);
connect(num[i][j][p][q][],num[i+(<<(p-))][j][p-][q][],inf); connect(num[i+(<<(p-))][j][p-][q][],num[i][j][p][q][],);
connect(num[i][j][p-][q][],num[i][j][p][q][],inf); connect(num[i][j][p][q][],num[i][j][p-][q][],);
connect(num[i+(<<(p-))][j][p-][q][],num[i][j][p][q][],inf);
connect(num[i][j][p][q][],num[i+(<<(p-))][j][p-][q][],);
}
}
while (query--) {
int x1,y1,x2,y2,w,z,q=,p=,cur=++tot; scanf("%d%d%d%d%d%d",&x1,&y1,&x2,&y2,&z,&w);
ans+=w;
while ((<<(p+))<=x2-x1+) p++;
while ((<<(q+))<=y2-y1+) q++;
if (z) {
connect(cur,sink,w); connect(sink,cur,);
connect(num[x1][y1][p][q][],cur,inf); connect(cur,num[x1][y1][p][q][],);
connect(num[x1][y2-(<<q)+][p][q][],cur,inf); connect(cur,num[x1][y2-(<<q)+][p][q][],);
connect(num[x2-(<<p)+][y1][p][q][],cur,inf); connect(cur,num[x2-(<<p)+][y1][p][q][],);
connect(num[x2-(<<p)+][y2-(<<q)+][p][q][],cur,inf); connect(cur,num[x2-(<<p)+][y2-(<<q)+][p][q][],);
} else {
connect(source,cur,w); connect(cur,source,);
connect(cur,num[x1][y1][p][q][],inf); connect(num[x1][y1][p][q][],cur,);
connect(cur,num[x1][y2-(<<q)+][p][q][],inf); connect(num[x1][y2-(<<q)+][p][q][],cur,);
connect(cur,num[x2-(<<p)+][y1][p][q][],inf); connect(num[x2-(<<p)+][y1][p][q][],cur,);
connect(cur,num[x2-(<<p)+][y2-(<<q)+][p][q][],inf); connect(num[x2-(<<p)+][y2-(<<q)+][p][q][],cur,);
}
}
while (bfs()) ans-=dinic(source,inf);
printf("%d\n",ans);
fclose(stdin); fclose(stdout);
return ;
}

【HNOI】d 最小割的更多相关文章

  1. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  2. BZOJ-2127-happiness(最小割)

    2127: happiness(题解) Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1806  Solved: 875 Description 高一 ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. BZOJ3438 小M的作物(最小割)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...

  5. 最大流-最小割 MAXFLOW-MINCUT ISAP

    简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...

  6. bzoj1412最小割

    太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...

  7. 【BZOJ1497】[NOI2006]最大获利 最小割

    裸的最小割,很经典的模型. 建图:要求总收益-总成本最大,那么将每条弧与源点相连,流量为成本,每个收益与汇点相连,流量为收益,然后每条弧与它所能到达的收益相连,流量为inf. 与源点相连的是未被选中的 ...

  8. 二分图&网络流&最小割等问题的总结

    二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...

  9. CQOI 2016 不同的最小割

    题目大意:一个无向图,求所有点对不同的最小割种类数 最小割最多有n-1个,这n-1个最小割构成一个最小割树 分治法寻找n-1个最小割.对于当前点集X,任选两点为ST做最小割,然后找出与S相连的所有点和 ...

随机推荐

  1. Qt-排序

    1.要求传入起始指针,总长度,单元素空间占用大小(sizeof(A[i])),判断函数. 判断函数参数类型为const void *,使用需要在函数内自行转换为对应类型, 返回值为整数型,升序排序时正 ...

  2. 【Linux】- mv命令

    Linux mv命令用来为文件或目录改名.或将文件或目录移入其它位置. 语法 mv [options] source dest mv [options] source... directory 参数说 ...

  3. Perfmon - Windows 自带系统监控工具

    一. 简述 可以用于监视CPU使用率.内存使用率.硬盘读写速度.网络速度等. Perfmon提供了图表化的系统性能实时监视器.性能日志和警报管理,系统的性能日志可定义为二进制文件.文本文件.SQLSE ...

  4. Centos安装TFTP/NFS/PXE服务器网络引导安装系统

    客户端网卡要求支持以PXE启动,配置都在服务端进行,通过PXE网络启动安装系统流程: 客户端以PXE启动发送DHCP请求: 服务器DHCP应答,包括客户端的IP地址,引导文件所在TFTP服务器: 客户 ...

  5. java 基础 --集合--012

    1, 数组与集合 A:长度不同 数组的长度固定,集合的长度可变 B:内容不同 数组里存储的是同一种类型的元素,而集合可以存储不同类型的元素 C:元素的数据类型问题 数组可以存储基本数据类型,也可以存储 ...

  6. mysql学习之数据备份与恢复

    该文使用mysql5.5 centos6.5 64位(本人使用rpm安装mysql,数据库的安装目录默认) 一.数据备份注意事项 读锁问题:数据库(或者某个表)一旦进行读锁操作则影响数据库的写操作所以 ...

  7. BZOJ 1263 整数划分(数学+高精度)

    我们不妨考虑可以划分为实数的情况,设划分为x份实数,使得总乘积最大. 易得当每一份都相等时乘积最大.即 ans=(n/x)^x. 现在只需要求出这个函数取得最大值的时候x的取值了. 两边取对数,则有l ...

  8. c/c++中的关键字(static、const、inline、friend)

    static:1.a.c语言中static修饰的局部变量在编译时赋初始值,只赋初始值一次,在函数运行时已有初值,每次调用函数时不用重新赋值,指示保留上次 函 数调用结束时的值. 如果定义局部变量不赋初 ...

  9. HTML5 应用程序缓存

    使用HTML5,通过创建 cache manifest 文件,可以轻松创建web应用的离线缓存.   什么事应用程序缓存? HTML5引入了应用程序缓存,这意味着 web 应用可进行缓存,并在没有因特 ...

  10. [洛谷P3950]部落冲突

    题目大意:给你一棵树,有$3$个操作: $Q\;p\;q:$询问$p,q$是否连通 $C\;p\;q:$把$p->q$这条边割断 $U\;x:$恢复第$x$次操作二 题解:可以在割断时把这条边赋 ...