| Data Wrangling |

# Sort all the data into one file

files = ['BeijingPM20100101_20151231.csv','ChengduPM20100101_20151231.csv','GuangzhouPM20100101_20151231.csv','ShanghaiPM20100101_20151231.csv','ShenyangPM20100101_20151231.csv']
out_columns = ['No', 'year', 'month', 'day', 'hour', 'season', 'PM_US Post']

# Create a void dataframe

df_all_cities = pd.DataFrame()

# Iterate to write diffrent files

for inx, val in enumerate(files):
df = pd.read_csv(val)
df = df[out_columns]
# create a city column
df['city'] = val.split('P')[0]
# map season
df['season'] = df['season'].map({1:'Spring', 2:'Summer', 3:'Autumn', 4: 'Winter'})
# append each file and merge all files into one
df_all_cities = df_all_cities.append(df)

# replace the space in variable names with '_'

df_all_cities.columns = [c.replace(' ', '_') for c in df_all_cities.columns]

# Assignment: 

# print the length of data
print("The number of row in this dataset is ",len(Beijing_data.index))
# calculating the number of records in column "PM_Dongsi"
print("There number of missing data records in PM_Dongsi is: ",len(Beijing_data.index) - len(Beijing_data['PM_Dongsi'].dropna()))
print("There number of missing data records in PM_Dongsihuan is: ",len(Beijing_data.index) - len(Beijing_data['PM_Dongsihuan'].dropna()))
print("There number of missing data records in PM_Nongzhanguan is: ",len(Beijing_data.index) - len(Beijing_data['PM_Nongzhanguan'].dropna()))
print("There number of missing data records in DEWP is: ",len(Beijing_data.index) - len(Beijing_data['DEWP'].dropna()))
print("There number of missing data records in HUMI is: ",len(Beijing_data.index) - len(Beijing_data['HUMI'].dropna()))
print("There number of missing data records in PRES is: ",len(Beijing_data.index) - len(Beijing_data['PRES'].dropna()))
print("There number of missing data records in TEMP is: ",len(Beijing_data.index) - len(Beijing_data['TEMP'].dropna()))
print("There number of missing data records in cbwd is: ",len(Beijing_data.index) - len(Beijing_data['cbwd'].dropna()))
print("There number of missing data records in Iws is: ",len(Beijing_data.index) - len(Beijing_data['Iws'].dropna()))
print("There number of missing data records in precipitation is: ",len(Beijing_data.index) - len(Beijing_data['precipitation'].dropna()))
print("There number of missing data records in Iprec is: ",len(Beijing_data.index) - len(Beijing_data['Iprec'].dropna()))

Learning notes | Data Analysis: 1.2 data wrangling的更多相关文章

  1. Learning notes | Data Analysis: 1.1 data evaluation

    | Data Evaluation | - Use Shift + Enter or Shift + Return to run the upper box so as to make it disp ...

  2. How to use data analysis for machine learning (example, part 1)

    In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite ...

  3. Learning Spark: Lightning-Fast Big Data Analysis 中文翻译

    Learning Spark: Lightning-Fast Big Data Analysis 中文翻译行为纯属个人对于Spark的兴趣,仅供学习. 如果我的翻译行为侵犯您的版权,请您告知,我将停止 ...

  4. 用pandas进行数据清洗(二)(Data Analysis Pandas Data Munging/Wrangling)

    在<用pandas进行数据清洗(一)(Data Analysis Pandas Data Munging/Wrangling)>中,我们介绍了数据清洗经常用到的一些pandas命令. 接下 ...

  5. An Introduction to Stock Market Data Analysis with R (Part 1)

    Around September of 2016 I wrote two articles on using Python for accessing, visualizing, and evalua ...

  6. 学习笔记之Python for Data Analysis

    Python for Data Analysis, 2nd Edition https://www.safaribooksonline.com/library/view/python-for-data ...

  7. 《利用Python进行数据分析: Python for Data Analysis 》学习随笔

    NoteBook of <Data Analysis with Python> 3.IPython基础 Tab自动补齐 变量名 变量方法 路径 解释 ?解释, ??显示函数源码 ?搜索命名 ...

  8. Python for Data Analysis

    Data Analysis with Python ch02 一些有趣的数据分析结果 Male描述的是美国新生儿男孩纸的名字的最后一个字母的分布 Female描述的是美国新生儿女孩纸的名字的最后一个字 ...

  9. 深入浅出数据分析 Head First Data Analysis Code 数据与代码

    <深入浅出数据分析>英文名为Head First Data Analysis Code, 这本书中提供了学习使用的数据和程序,原书链接由于某些原因不 能打开,这里在提供一个下载的链接.去下 ...

随机推荐

  1. js计算时间差(天,小时,分钟,秒)

    <script type="text/javascript"> var date1= '2015/05/01 00:00:00'; //开始时间 var date2 = ...

  2. 在windows上安装nginx并注册

    在windows上安装nginx并注册 一.前言   最近自己也尝试了一下在windows上安装nginx,其实非常的简单,这里算是备忘一下. 二.在windows下面安装   首先需要到nginx的 ...

  3. 获取所有权windows目录所有权

    Takeown /r /f 盘符:\目录\目录 例如: Takeown /r /f C:\Windows\CSC

  4. bzoj3609 [Heoi2014]人人尽说江南好

    Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏.    在过去,人们是要边玩 ...

  5. Loj#572. 「LibreOJ Round #11」Misaka Network 与求和

    题目 有生之年我竟然能\(A\) 这个题求的是这个 \[\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))^k\] \(f(i)\)定义为\(i\)的次大质因子,其中\(f(p)= ...

  6. 动态截屏软件jpg格式

    软件下载地址:https://github.com/weibanggang/jiedu 开始截屏 保存路径 生成图片 预览

  7. python调用对象属性出错:AttributeError: 'function' object has no attribute '_name_'

    出错如下图所示: 原来是因为把__name__写成_name_, 下图为正确结果:

  8. android:windowSoftInputMode属性详解 软键盘

    android:windowSoftInputMode activity主窗口与软键盘的交互模式,可以用来避免输入法面板遮挡问题,Android1.5后的一个新特性. 这个属性能影响两件事情: [一] ...

  9. mime中间件

    mime中间件Demo,里面用到的有 1.path模块 //引入模块 var path=require('path'); 2.extname方法 //获取文件的扩展名 var extname=path ...

  10. UIScrollView的常用属性

    UIScrollView的常用属性