吉夫特

Time Limit: 15 Sec  Memory Limit: 512 MB
[Submit][Status][Discuss]

Description

  

Input

  第一行一个整数n。
  接下来n行,每行一个整数,这n行中的第i行,表示ai。

Output

    一行一个整数表示答案。

Sample Input

  4
  15
  7
  3
  1

Sample Output

  11

HINT

  

Main idea

  给定一个序列,问有多少个子序列满足相邻的数构成的组合数都为奇数。

Solution

  首先我们用Lucas定理推一推可以知道:C(n,m)为奇数当且仅当n&m=m

  有了这个定理就好办了,我们可以显然地想到DP:通过枚举数在二进制下的子集转移,这样保证了可以转移过去。

  由于序列每个数都不同,且最大值为233333,所以效率是O(3^18)的。

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std; const int ONE = ;
const int MOD = 1e9+; int n,x;
int f[ONE];
int Ans; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} int main()
{
n = get();
for(int i=; i<=n; i++)
{
x = get();
int record = (f[x] + ) % MOD;
for(int sub=x; sub; sub=(sub-) & x)
f[sub] = (f[sub] + record) % MOD;
Ans = (Ans + record) % MOD;
}
printf("%d", Ans-n);
}

【BZOJ4903】【CTSC2017】吉夫特 [DP]的更多相关文章

  1. bzoj千题计划247:bzoj4903: [Ctsc2017]吉夫特

    http://uoj.ac/problem/300 预备知识: C(n,m)是奇数的充要条件是 n&m==m 由卢卡斯定理可以推出 选出的任意相邻两个数a,b 的组合数计算C(a,b)必须是奇 ...

  2. BZOJ4903: [Ctsc2017]吉夫特

    传送门 可以发现,\(\binom{n}{m}\equiv 1(mod~2)\) 当且仅当 \(m~and~n~=~m\) 即 \(m\) 二进制下为 \(n\) 的子集 那么可以直接写一个 \(3^ ...

  3. BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】

    BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...

  4. 【CTSC2017】【BZOJ4903】吉夫特 卢卡斯定理 DP

    题目描述 给你一个长度为\(n\)的数列\(a\),求有多少个长度\(\geq 2\)的不上升子序列\(a_{b_1},a_{b_2},\ldots,a_{b_k}\)满足 \[ \prod_{i=2 ...

  5. 【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp

    题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2 ...

  6. bzoj4903 & loj2264 [Ctsc2017]吉夫特 Lucas 定理+状压DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4903 https://loj.ac/problem/2264 http://uoj.ac/pr ...

  7. [CTSC2017]吉夫特(Lucas定理,DP)

    送70分,预处理组合数是否为偶数即可. 剩下的数据,根据Lucas定理的推论可得当且仅当n&m=n的时候,C(n,m)为奇数.这样就可以直接DP了,对于每个数,考虑它对后面的数的影响即可,直接 ...

  8. loj 300 [CTSC2017]吉夫特 【Lucas定理 + 子集dp】

    题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} { ...

  9. bzoj 4903: [Ctsc2017]吉夫特【lucas+状压dp】

    首先根据lucas, \[ C_n^m\%2=C_{n\%2}^{m\%2}*C_{n/2}^{m/2} \] 让这个式子的结果为计数的情况只有n&m==m,因为m的每一个为1的二进制位都需要 ...

随机推荐

  1. Alpha冲刺——第四天

    Alpha第四天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...

  2. Java内存区域划分和GC机制

    Java 内存区域和GC机制   目录 Java垃圾回收概况 Java内存区域 Java对象的访问方式 Java内存分配机制 Java GC机制 垃圾收集器 Java垃圾回收概况 Java GC(Ga ...

  3. lintcode-196-寻找缺失的数

    196-寻找缺失的数 给出一个包含 0 .. N 中 N 个数的序列,找出0 .. N 中没有出现在序列中的那个数. 样例 N = 4 且序列为 [0, 1, 3] 时,缺失的数为2. 挑战 在数组上 ...

  4. C# 使用this的形参

    示例1: public static RectangleF TransformRect(this Matrix mat, RectangleF rect) 是向Matrix类扩展带有Rectangle ...

  5. Spring编程式事务管理及声明式事务管理

    本文将深入讲解 Spring 简单而强大的事务管理功能,包括编程式事务和声明式事务.通过对本教程的学习,您将能够理解 Spring 事务管理的本质,并灵活运用之. Spring 事务属性分析 事务管理 ...

  6. Android SDK Manager下载,解决方案

    一.Windows 平台 在C:\Windows\System32\drivers\etc\hosts文件.添加一行:74.125.237.1       dl-ssl.google.com 二.Li ...

  7. CentOS 文件隐藏属性

    1.chattr用于配置文件的隐藏属性 语法: chattr [-RVf] [-+=aAcCdDeijsStTu] [-v version] files... 选项与参数: +:增加某个特殊参数,其他 ...

  8. ARC077D 11 组合数

    ---题面--- 题解: 做这道题的时候zz了,,,, 写了个很复杂的式子,然而后面重新想就发现很简单了. 考虑用总的情况减去重复的. 假设唯一重复的两个数的位置分别是l和r,那么唯一会导致重复的方案 ...

  9. POJ3686:The Windy's——题解

    http://poj.org/problem?id=3686 题目大意: 有n个订单m个厂子,第i个订单在第j个厂子所需时间为zij,一个厂子做一个订单时不能做其他的订单. 求订单平均时间最小值. — ...

  10. BZOJ4597:[SHOI2016]随机序列——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4597 你的面前有N个数排成一行.分别为A1, A2, … , An.你打算在每相邻的两个 Ai和 ...