Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 772   Accepted: 175

Description

Write a program that, given three positive integers xy and z (xyz < 232x ≤ y), computes the bitwise exclusive disjunction (XOR) of the arithmetic progression xx + zx + 2z, …, x + kz, where k is the largest integer such that x + kz ≤ y.

Input

The input contains multiple test cases. Each test case consists of three integers xyz separated by single spaces on a separate line. There are neither leading or trailing blanks nor empty lines. The input ends once EOF is met.

Output

For each test case, output the value of  on a separate line. There should be neither leading or trailing spaces nor empty lines.

Sample Input

2 173 11

Sample Output

48

Source

 
 
数学问题 解析几何 递归
 
我可能开了假的公式支持……latex公式全都炸了,迷
upd:发现markdown编辑器的latex和这里的latex好像不太兼容,用CSDN的markdown写好公式复制过来不识别,复制到记事本里清一下文本格式再复制回来就好了
 

异或的每一位是独立的,所以可以分别计算每一位的答案。

假设现在正在处理的二进制位为 $ 2 ^ i $ ,我们需要计算

\( \left \lfloor \frac{x}{2^i} \right \rfloor + \left \lfloor \frac{x+z}{2^i} \right \rfloor + \left \lfloor \frac{x+2z}{2^i} \right \rfloor + \left \lfloor \frac{x+3z}{2^i} \right \rfloor + [f(x)] + \left \lfloor \frac{x+(n-1)z}{2^i} \right \rfloor \)

好麻烦啊,换个表示方法:

\( a=z \)

$ b=x $

$ c=2^i $

$ans=\sum_{x=0}^{n-1} \left \lfloor \frac{ax+b}{c} \right \rfloor$

$ans=\sum_{x=0}^{n-1} (\left \lfloor \frac{ax}{c} \right \rfloor +\left \lfloor \frac{b}{c} \right \rfloor +\left \lfloor \frac{(a\%c)*x+b\%c}{c} \right \rfloor) $ (1)

前两项可以提出来用等差数列求和公式算,后一项看着有点麻烦啊

把后一项画出来是这个样子:

发现我们要算的是直线下面的整点的数量,即图中的蓝点数。

为了方便地计算蓝点,重建直角坐标系,像下面那样:

原来的直线方程是

$ \frac{(a\%c) * x + b\%c)}{c} $

现在变成了

$ \frac{cx+(an+b)\%c}{a\%c} $

(斜率取倒数,再算一下x0到n的距离作为截距)

那么

$ ans=\sum_{x=0}^{n-1} \left \lfloor \frac{ax+b}{c} \right \rfloor =\sum_{x=0}^{\lfloor (a\%c)n+(b\%c)/c +1\rfloor} \lfloor \frac{cx+(an+b)\%c}{a\%c} \rfloor $

可以发现这是一个可以递归计算的形式。

所以每次递归处理余下的部分,累加计算(1)式的前两项,算出这一位的值以后,判断二进制的这一位是奇数还是偶数,统计最终答案。

计算会爆int。

 /*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
LL calc(LL a,LL b,LL c,LL n){
if(!n)return ;
LL tmp=(LL)a/c*n*(n-)/;
tmp+=(LL)b/c*n;
return tmp+calc(c,(a*n+b)%c,a%c,((a%c)*n+b%c)/c);
}
int main(){
LL x,y,z;
while(scanf("%lld%lld%lld",&x,&y,&z)!=EOF){
LL ans=;
for(int i=;i>=;i--){
ans|=(calc(z,x,1ll<<i,((LL)y-x++z-)/z)&1ll)<<i;
}
printf("%lld\n",ans);
}
return ;
}

POJ3495 Bitwise XOR of Arithmetic Progression的更多相关文章

  1. CF 1114 E. Arithmetic Progression

    E. Arithmetic Progression 链接 题意: 交互题. 有一个等差序列,现已打乱顺序,最多询问60次来确定首项和公差.每次可以询问是否有严格大于x的数,和查看一个位置的数. 分析: ...

  2. Dirichlet's Theorem on Arithmetic Progression

    poj3006 Dirichlet's Theorem on Arithmetic Progressions 很显然这是一题有关于素数的题目. 注意数据的范围,爆搜超时无误. 这里要用到筛选法求素数. ...

  3. Find Missing Term in Arithmetic Progression 等差数列缺失项

    查找等差数列中的缺失项. e.g.Input: arr[] = {2, 4, 8, 10, 12, 14} Output: 6 Input: arr[] = {1, 6, 11, 16, 21, 31 ...

  4. BestCoder22 1002.NPY and arithmetic progression(hdu 5143) 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5143 题目意思:给出 1, 2, 3, 4 的数量,分别为a1, a2, a3, a4,问是否在每个数 ...

  5. codeforces C. Arithmetic Progression 解题报告

    题目链接:http://codeforces.com/problemset/problem/382/C 题目意思:给定一个序列,问是否可以通过只插入一个数来使得整个序列成为等差数列,求出总共有多少可能 ...

  6. cf C. Arithmetic Progression

    http://codeforces.com/contest/382/problem/C 题意:给你n个数,然后让你添加一个数使得n+1个数能形成这样的规律,a[1]-a[0]=a[2]-a[1]=a[ ...

  7. CF1114E Arithmetic Progression(交互题,二分,随机算法)

    既然是在CF上AC的第一道交互题,而且正是这场比赛让我升紫了,所以十分值得纪念. 题目链接:CF原网 题目大意:交互题. 有一个长度为 $n$ 的序列 $a$,保证它从小到大排序后是个等差数列.你不知 ...

  8. Codeforces 1114E - Arithmetic Progression - [二分+随机数]

    题目链接:http://codeforces.com/problemset/problem/1114/E 题意: 交互题,有一个 $n$ 个整数的打乱顺序后的等差数列 $a[1 \sim n]$,保证 ...

  9. HDU 5143 NPY and arithmetic progression(思维)

    http://acm.hdu.edu.cn/showproblem.php?pid=5143 题意: 给定数字1,2,3,4.的个数每个数字能且仅能使用一次,组成多个或一个等差数列(长度大于等于3), ...

随机推荐

  1. <Android>资源的访问,颜色、字符串、尺寸、XML、DRAWABLES资源分使用

    1.资源的访问 代码中使用Context的getResources()方法得到Resources对象,访问自己定义的资源R.资源文件类型.资源文件名称,访问系统定义的资源android.R. 资源文件 ...

  2. lol人物模型提取(七)

      9月13号我就把上了贴图的模型文件发了过去,到9月18号他们那的颜色就上好了,一个叫"3d打印旗舰店"的人加了我微信并拍了几张照片发了给我,效果图如下:   第一眼看上去我还是 ...

  3. 基于c++的ostu算法的实现

    图像二值化算法是图像处理的基础.一般来说,二值化算法可以分为两个类别:全局二值化和局部二值化.全局二值化是指通过某种算法找到一个全局的阈值T,对图像中坐标为(x,y)的像素值做如下处理: Ostu就是 ...

  4. Runtime介绍

    本文目录 1.Runtime简介 2.Runtime相关的头文件 3.技术点和应用场景 3_1.获取属性\成员变量列表 3_2.交换方法实现 3_3.类\对象的关联对象,假属性 3_4.动态添加方法, ...

  5. bzoj3782上学路线

    题意:从n*m网格图的左下角走到右上角(n,m<=10^10),有t个坐标不能经过(t<=200),只能向上向右走,问有多少种不同的走法,对p取模, p只有两种取值,1000003(质数) ...

  6. ictclas4j 分词工具包 安装流程

    首先把 ictclasj解压缩,然后 1.把 Data文件夹整个拷贝到 Eclipse项目的文件夹下, 2.而 bin目录下的 org文件夹整个拷贝到你 Eclipse项目的 bin目录下,(将cla ...

  7. Oracle DB_LINK如何使用

    语句,或可通过可视化操作 -- Create database link create database link DBL_TESTconnect to UID identified by PSWus ...

  8. 【刷题】BZOJ 4830 [Hnoi2017]抛硬币

    Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A为 ...

  9. syslog服务器配置笔记

    syslog服务器可以用作一个网络中的日志监控中心,rsyslog是一个开源工具,被广泛用于Linux系统以通过TCP/UDP协议转发或接收日志消息.本文我们来讲讲在 Linux 上配置一个 sysl ...

  10. nodejs创建多层目录

    1. fs.mkdir不能一次创建多层目录,必须先创建上层目录,再创建下层目录 //同步 fs.mkdirSync("./tmp/"); fs.mkdirSync("./ ...