POJ 2031 Building a Space Station【最小生成树+简单计算几何】
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.
All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.
You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.
You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.
Input
n
x1 y1 z1 r1
x2 y2 z2 r2
...
xn yn zn rn
The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.
The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.
Each of x, y, z and r is positive and is less than 100.0.
The end of the input is indicated by a line containing a zero.
Output
Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.
Sample Input
3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0
Sample Output
20.000
0.000
73.834
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<=(n); i++)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxm = 1e6 + ;
const double PI = acos(-1.0);
const double eps = 1e-;
const int dx[] = {-,,,,,,-,-};
const int dy[] = {,,,-,,-,,-};
int dir[][] = {{,},{,-},{-,},{,}};
const int mon[] = {, , , , , , , , , , , , };
const int monn[] = {, , , , , , , , , , , , };
const int mod = ;
#define inf 0x3f3f3f3f
#define ll long long
const int maxn = ; int u,v,w;
int n,m,ans,k,cnt;
double sum=0.0;
struct point
{
double x,y,z,r;
}a[maxn];
struct node
{
int u,v;
double w;
}e[maxn*maxn];
double dis(point a,point b)
{
return sqrt((b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y)+(b.z-a.z)*(b.z-a.z)) -a.r - b.r;
}
int fa[maxn];
int Find(int x)
{
if(fa[x]!=x)
fa[x]=Find(fa[x]);
return fa[x];
}
void join(int x,int y)
{
int xx = Find(x);
int yy = Find(y);
fa[xx]=yy;
}
bool cmp(node a,node b)
{
return a.w < b.w;
}
void kruskal()
{
cnt=,sum=;
for(int i=;i<m;i++)
{
int xx=Find(e[i].u);
int yy=Find(e[i].v);
if(xx != yy)
{
join(xx,yy);//
cnt++;
sum += e[i].w;
}
if(cnt == n-) break;
}
printf("%.3f\n",sum);
}
int main()
{
while(~scanf("%d",&n) && n)
{
sum=0.0, cnt=,m=;
rep(i,,n-)
fa[i]=i;
for(int i=;i<n;i++)
scanf("%lf%lf%lf%lf",&a[i].x, &a[i].y, &a[i].z, &a[i].r); for(int i=;i<n;i++) //n-1!
{
for(int j=i+; j<n; j++)
{
double d = dis(a[i],a[j]);
e[m].u = i;
e[m].v = j;
e[m].w = d<?:d;
m++;
}
} sort(e, e+m, cmp); kruskal();
}
}
/*
【题意】
给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能够相互连通。
如果两个球有重叠的部分则算为已连通,无需再搭桥。求搭建通路的最小费用(费用就是边权,就是两个球面之间的距离)。 【类型】
最小生成树 【分析】
建图是关键 【时间复杂度&&优化】 【trick】
*/
POJ 2031 Building a Space Station【最小生成树+简单计算几何】的更多相关文章
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5173 Accepte ...
- POJ 2031 Building a Space Station 最小生成树模板
题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...
- POJ 2031 Building a Space Station【经典最小生成树】
链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...
- poj 2031 Building a Space Station【最小生成树prime】【模板题】
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5699 Accepte ...
- POJ 2031 Building a Space Station
3维空间中的最小生成树....好久没碰关于图的东西了..... Building a Space Station Time Limit: 1000MS Memory Li ...
- POJ - 2031 Building a Space Station 三维球点生成树Kruskal
Building a Space Station You are a member of the space station engineering team, and are assigned a ...
- POJ 2031 Building a Space Station (计算几何+最小生成树)
题目: Description You are a member of the space station engineering team, and are assigned a task in t ...
- POJ - 2031C - Building a Space Station最小生成树
You are a member of the space station engineering team, and are assigned a task in the construction ...
随机推荐
- VUE 内置的标签<keep-alive></keep-alive>作用
<keep-alive></keep-alive> 的作用是 包裹动态组件时,会缓存不活动的组件实例,主要用于保留组件状态或避免重新渲染组件
- 2015/9/18 Python基础(14):函数式编程
这篇写了忘发.现在补上. Python不是也不大可能成为一种函数式的编程语言,但是它支持许多有价值的函数式编程语言构建.也有些表现的像函数式编程机制但是从传统上也不能认为是函数式编程语言的构建.Pyt ...
- PowerDesigner16 活动图
活动是某件事情正在进行的状态.活动在状态机中表现为一个由一系列动作组成 的非原子的执行过程. 活动图是一种描述系统行为的图,它用于展现 参与行为的实体所进行的各种活动的顺序关系.活动图(Activit ...
- 如何免费上传4G以上大文件至百度云网盘
百度云网盘的容量高达2048G,因而如今使用百度云网盘的用户也越来越多, 但是百度云中如果要上传超过4G的大文件,必须要升级VIP才行,但这需要收费.那么,超过4G以上的大文件我们该怎样上传到百度云呢 ...
- hdu 1166敌兵布阵(线段树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1166 敌兵布阵 Time Limit: 2000/1000 MS (Java/Others) M ...
- JSP九大内置对象,七大动作,三大指令
JSP之九大内置对象 隐藏对象入门探索 Servlet 和JSP中输出数据都需要使用out对象.Servlet 中的out对象是通过getWriter()方法获取的.而JSP中没有定义out对象却可以 ...
- linux下守护进程的创建
最近在学习linux c编程 看到了守护进程的创建,感觉很好玩, 测试环境ubuntu 15.04 下面贴出测试代码 #include <stdio.h> #include <std ...
- Yii 1.1.17 四、属性标签、AR类增删改查、使用上传类与扩展第三方类库
一.属性标签与规则设置 当进入网站页面,将会读数据库返回信息到视图上.那么,现在定义模型中的属性在视图标签上的显示, 也就是模型属性到前台标签的映射 // 定义模型属性到前台标签的映射 public ...
- CSS原生布局方式
前言 网页原生布局的方法其实网上有很多,大概为Flow(流动布局模型).Float(浮动布局模型).Layer(层级布局模型).<!--more--> Flow布局 流动布局模型其实就是默 ...
- Context-Aware Network Embedding for Relation Modeling
Context-Aware Network Embedding for Relation Modeling 论文:http://www.aclweb.org/anthology/P17-1158 创新 ...