POJ1845 Sumdiv [数论,逆元]
Sumdiv
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 26041 | Accepted: 6430 |
Description
Input
Output
Sample Input
2 3
Sample Output
15
Hint
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
Source
分析:
题意就是求A^B在mod 9901下的约数和。
之前遇到过一个一模一样的题,直接分解质因数,把每一个质因数按照费马小定理对9901-1取模然后直接暴力计算就过了,但是在这里死活过不了。然后稍微推了一下发现这么做有BUG,因为9900不是质数,取模的时候会出错。
然后翻了一下lyd的书,正解思路了解一下。
同样先分解质因数,再由约数和定理ans=(1+q1+q1^2+...+q1^(c1*b))*(1+q2+q2^2+...+q2^(c2*b))*...*(1+qn+qn^2+...qn^(cn*b))可得,对于每一个质因数qi,求(1+qi+qi^2+...+qi^(ci*b))时,可以用等比数列的求和公式求,即(qi^(b*ci+1))/(qi-1),但是除法并不满足取模的分配律,所以就用逆元来代替。也就是求1/(qi-1)在模9901下的逆元。但是要注意,qi-1可能被9901整除,此时不存在逆元。不过可以发现,此时qi mod 9901=1,那么(1+qi+qi^2+...+qi^(b*ci))=1+1+1+...+1(b*ci+1个1),特判即可。
Code:
//It is made by HolseLee on 21st June 2018
//POJ 1845
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<iomanip>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll mod=;
const ll N=5e6+;
ll A,B,q[N],f[N],ans,tot,cnt;
void fenjie()
{
for(ll i=;i*i<=A;i++){
if(A%i==){
q[++cnt]=i;
while(A%i==){
f[cnt]++;A/=i;}
}
}
if(A>)q[++cnt]=A,f[cnt]++;
}
inline ll power(ll x,ll y)
{
ll ret=;
while(y>){
if(y&)ret=(ret*x)%mod;
x=(x*x)%mod;y>>=;}
return ret;
}
void work()
{
fenjie();ans=;
for(int i=;i<=cnt;i++){
if((q[i]-)%mod==){
ans=(ans*(B*f[i]+)%mod)%mod;
continue;}
ll x=power(q[i],B*f[i]+);
x=(x-+mod)%mod;
ll y=power(q[i]-,mod-);
ans=(ans*x*y)%mod;
}
printf("%lld",ans);
}
int main()
{
cin>>A>>B;
work();return ;
}
POJ1845 Sumdiv [数论,逆元]的更多相关文章
- POJ1845 sumdiv 数论
正解:小学数学数论 解题报告: 传送门! 其实不难但我数学这个方面太菜了所以还是多写点儿博客趴QAQ 然后因为是英文的所以先翻译一下,,,? 大概就是说求AB的所有约数之和,对9901取膜 这个只需要 ...
- 题解 poj1845 Sumdiv (数论) (分治)
传送门 大意:求A^B的所有因子之和,并对其取模 9901再输出 (这题又调了半天,把n和项数弄混了QAQ) 根据算数基本定理:A=(p1^k1)*(p2^k2)*(p3^k3)*...*(pn^kn ...
- poj1845 Sumdiv
poj1845 Sumdiv 数学题 令人痛苦van分的数学题! 题意:求a^b的所有约数(包括1和它本身)之和%9901 这怎么做呀!!! 百度:约数和定理,会发现 p1^a1 * p2^a2 * ...
- 【题解】POJ1845 Sumdiv(乘法逆元+约数和)
POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可 ...
- POJ1845 Sumdiv 数学?逆元?
当初写过一篇分治的 题意:求A^B的所有因子之和,并对其取模 9901再输出 对于数A=p1^c1+p2^c2+...+pn*cn,它的所有约数之和为(1+p1+p1^2+p1^3+...+p1^(c ...
- POJ 1845 Sumdiv(逆元)
题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点 1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...
- POJ 1845 Sumdiv 【逆元】
题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: ...
- poj1845 sumdiv (因数的和)
首先分解质因数,$A^B=p_1^{m_1B}p_2^{m_2B}...p_n^{m_nB}$ 然后的话,它的所有因数的和就是$\prod{(1+p_i^1+p_i^2+...+p_i^n)}$ 用一 ...
- 约数之和(POJ1845 Sumdiv)
最近应老延的要求再刷<算法进阶指南>(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~ 原题链接:POJ1845 翻译版题目(其实是AcW ...
随机推荐
- List<Hashtable>排序
hashtableList.Sort( delegate (Hashtable a, Hashtable b) { DateTime dateTime1 = (DateTime)a["ber ...
- Eclipse Tomcat Project报错:HTTP Status 404错误
想要在eclipse里部署tomcat,结果tomcat单独可以通过连接测试,用eclipse就404了 404肯定都是目录不对,试了半天在eclipse下改了一下配置和文件位置就行了 1.先在菜单栏 ...
- Large Class--过大的类--要重构的信号
如果想利用单个类做太多事情,其内往往就会出现太多实例变量.一旦如此,Duplicated Code也就接踵而至. 解决方法: 1.将类内彼此相关的变量,将它们放在一起.使用Extrac ...
- js获取屏幕高度宽度
获取各种屏幕的宽度和高度Javascript: 网页可见区域宽: document.body.clientWidth网页可见区域高: document.body.clientHeight网页可见区域宽 ...
- 网页实现插入图片—css与html的区别
Q1.二者有何区别?A1.写在css里面的图片是以背景图形式存在的,而写在html里的是以<img>标签形式存在的,在网页加载的过程中,以css背景图存在的图片会等到结构加载完成(网页的内 ...
- c语言中网络字节序和主机字节序的转换
函数说明 相关函数:htonl, htons, ntohl 头文件:#include <netinet/in.h> 定义函数:unsigned short int ntohs(unsi ...
- centos 搭建 ss
download:https://files.cnblogs.com/files/xishaonian/ShadowsocksR-4.7.0-win.7z 使用方法:使用root用户登录,运行以下命令 ...
- [转载]关于python字典类型最疯狂的表达方式
一个Python字典表达式谜题 让我们探究一下下面这个晦涩的python字典表达式,以找出在python解释器的中未知的内部到底发生了什么. # 一个python谜题:这是一个秘密 # 这个表达式计算 ...
- python 使用headless chrome滚动截图
from selenium import webdriver from selenium.webdriver.chrome.options import Options import util chr ...
- Deep Learning基础--参数优化方法
1. 深度学习流程简介 1)一次性设置(One time setup) -激活函数(Activation functions) - 数据预处理(Data Preprocessing) ...