题目传送门

Sumdiv

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 26041   Accepted: 6430

Description

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8. 
The natural divisors of 8 are: 1,2,4,8. Their sum is 15. 
15 modulo 9901 is 15 (that should be output). 

Source


  分析:

  题意就是求A^B在mod 9901下的约数和。

  之前遇到过一个一模一样的题,直接分解质因数,把每一个质因数按照费马小定理对9901-1取模然后直接暴力计算就过了,但是在这里死活过不了。然后稍微推了一下发现这么做有BUG,因为9900不是质数,取模的时候会出错。

  然后翻了一下lyd的书,正解思路了解一下。

  同样先分解质因数,再由约数和定理ans=(1+q1+q1^2+...+q1^(c1*b))*(1+q2+q2^2+...+q2^(c2*b))*...*(1+qn+qn^2+...qn^(cn*b))可得,对于每一个质因数qi,求(1+qi+qi^2+...+qi^(ci*b))时,可以用等比数列的求和公式求,即(qi^(b*ci+1))/(qi-1),但是除法并不满足取模的分配律,所以就用逆元来代替。也就是求1/(qi-1)在模9901下的逆元。但是要注意,qi-1可能被9901整除,此时不存在逆元。不过可以发现,此时qi mod 9901=1,那么(1+qi+qi^2+...+qi^(b*ci))=1+1+1+...+1(b*ci+1个1),特判即可。

  Code:

//It is made by HolseLee on 21st June 2018
//POJ 1845
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<iomanip>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll mod=;
const ll N=5e6+;
ll A,B,q[N],f[N],ans,tot,cnt;
void fenjie()
{
for(ll i=;i*i<=A;i++){
if(A%i==){
q[++cnt]=i;
while(A%i==){
f[cnt]++;A/=i;}
}
}
if(A>)q[++cnt]=A,f[cnt]++;
}
inline ll power(ll x,ll y)
{
ll ret=;
while(y>){
if(y&)ret=(ret*x)%mod;
x=(x*x)%mod;y>>=;}
return ret;
}
void work()
{
fenjie();ans=;
for(int i=;i<=cnt;i++){
if((q[i]-)%mod==){
ans=(ans*(B*f[i]+)%mod)%mod;
continue;}
ll x=power(q[i],B*f[i]+);
x=(x-+mod)%mod;
ll y=power(q[i]-,mod-);
ans=(ans*x*y)%mod;
}
printf("%lld",ans);
}
int main()
{
cin>>A>>B;
work();return ;
}

POJ1845 Sumdiv [数论,逆元]的更多相关文章

  1. POJ1845 sumdiv 数论

    正解:小学数学数论 解题报告: 传送门! 其实不难但我数学这个方面太菜了所以还是多写点儿博客趴QAQ 然后因为是英文的所以先翻译一下,,,? 大概就是说求AB的所有约数之和,对9901取膜 这个只需要 ...

  2. 题解 poj1845 Sumdiv (数论) (分治)

    传送门 大意:求A^B的所有因子之和,并对其取模 9901再输出 (这题又调了半天,把n和项数弄混了QAQ) 根据算数基本定理:A=(p1^k1)*(p2^k2)*(p3^k3)*...*(pn^kn ...

  3. poj1845 Sumdiv

    poj1845 Sumdiv 数学题 令人痛苦van分的数学题! 题意:求a^b的所有约数(包括1和它本身)之和%9901 这怎么做呀!!! 百度:约数和定理,会发现 p1^a1 * p2^a2 * ...

  4. 【题解】POJ1845 Sumdiv(乘法逆元+约数和)

    POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可 ...

  5. POJ1845 Sumdiv 数学?逆元?

    当初写过一篇分治的 题意:求A^B的所有因子之和,并对其取模 9901再输出 对于数A=p1^c1+p2^c2+...+pn*cn,它的所有约数之和为(1+p1+p1^2+p1^3+...+p1^(c ...

  6. POJ 1845 Sumdiv(逆元)

    题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点   1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...

  7. POJ 1845 Sumdiv 【逆元】

    题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和  用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: ...

  8. poj1845 sumdiv (因数的和)

    首先分解质因数,$A^B=p_1^{m_1B}p_2^{m_2B}...p_n^{m_nB}$ 然后的话,它的所有因数的和就是$\prod{(1+p_i^1+p_i^2+...+p_i^n)}$ 用一 ...

  9. 约数之和(POJ1845 Sumdiv)

    最近应老延的要求再刷<算法进阶指南>(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~ 原题链接:POJ1845 翻译版题目(其实是AcW ...

随机推荐

  1. HEOI 2012 旅行问题

    2746: [HEOI2012]旅行问题 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 1009  Solved: 318[Submit][Statu ...

  2. poj 3376 Finding Palindromes

    Finding Palindromes http://poj.org/problem?id=3376 Time Limit: 10000MS   Memory Limit: 262144K       ...

  3. 2015/9/18 Python基础(14):函数式编程

    这篇写了忘发.现在补上. Python不是也不大可能成为一种函数式的编程语言,但是它支持许多有价值的函数式编程语言构建.也有些表现的像函数式编程机制但是从传统上也不能认为是函数式编程语言的构建.Pyt ...

  4. 【C++ STL】List

    1.结构 list使用一个double linked list(双向链表)来管理元素. 2. list 能力 list内部结构和vector或deque截然不同,所以与他们的区别: list不支持随机 ...

  5. windows 安装elk日志系统

    1.前往https://www.elastic.co官网下载对应的elasticsearch .kibana和logstash他们的版本号一致. 2.elasticsearch 解压后前往bin文件下 ...

  6. Linux Shell下执行sqlplus

    转载自: http://www.cnblogs.com/include/archive/2011/12/30/2307889.html 以下方法解决了在linux下自动的删除创建用户 sqlplus ...

  7. codeforces contest 864 problemD

    Ivan has an array consisting of n elements. Each of the elements is an integer from 1 to n. Recently ...

  8. 第八周 yukun 20155335

  9. 洛谷 P3375 【模板】KMP字符串匹配

    我这段时间因为字符串太差而被关了起来了(昨晚打cf不会处理字符串现场找大佬模板瞎搞,差点就凉了),所以决定好好补一下字符串的知识QAQ,暂时先学习kmp算法吧~ 题目链接:https://www.lu ...

  10. Zen Cart、Joy-Cart、Magento、ShopEX、ECshop电子商务系统比较

    1.Zen Cart 优点:历史较久,系统经过长时间充分的测试,比较成熟:免费开源便于功能二次开发:基础功能强大:安装插件简单,修改文件很少,甚至不用修改文件:应用非常广泛,插件.模块更新快,其中多为 ...