混淆矩阵-MATLAB代码详解
一.混淆矩阵
(一).简介
在人工智能中,混淆矩阵(confusion matrix)是可视化工具,特别用于监督学习,在无监督学习一般叫做匹配矩阵。在图像精度评价中,主要用于比较分类结果和实际测得值,可以把分类结果的精度显示在一个混淆矩阵里面。混淆矩阵是通过将每个实测像元的位置和分类与分类图像中的相应位置和分类像比较计算的。
混淆矩阵(confusion matrix)刻画一个分类器的分类准确程度。“混淆”一词也形象地表达了分类器面对多个分类时可能造成的混淆。
(二).混淆矩阵(Confusion Matrix)举例说明
混淆矩阵的每一列代表了预测类别,每一列的总数表示预测为该类别的数据的数目;每一行代表了数据的真实归属类别,每一行的数据总数表示该类别的数据实例的数目。每一列中的数值表示真实数据被预测为该类的数目:如下图,第一行第一列中的43表示有43个实际归属第一类的实例被预测为第一类,同理,第二行第一列的2表示有2个实际归属为第二类的实例被错误预测为第一类。
举例如下:
如有150个样本数据,这些数据分成3类,每类50个。分类结束后得到的混淆矩阵为:
每一行之和为50,表示50个样本;
第一行说明类1的50个样本有43个分类正确,5个错分为类2,2个错分为类3。
二.混淆矩阵的MATLAB实现
(一).数据集如下:
(二).MATLAB实现
1.confusion_matrix1.m文件(在下面主函数中直接调用)
%==========================================================
function confusion_matrix1(act1,det1) [mat,order] = confusionmat(act1,det1);
k=max(order); %k为分类的个数 %也可作实验,自己随机产生矩阵
%mat = rand(5); %# A 5-by-5 matrix of random values from 0 to 1
%mat(3,3) = 0; %# To illustrate
%mat(5,2) = 0; %# To illustrate imagesc(mat); %# Create a colored plot of the matrix values
colormap(flipud(gray)); %# Change the colormap to gray (so higher values are %#black and lower values are white)
title('不分性别的分开预测标签与真实标签的混淆矩阵');
textStrings = num2str(mat(:),'%0.02f'); %# Create strings from the matrix values
textStrings = strtrim(cellstr(textStrings)); %# Remove any space padding %% ## New code: ###这里是不显示小矩阵块里的0,用空白代替
% idx = strcmp(textStrings(:), '0.00');
% textStrings(idx) = {' '};
%% ################ %# Create x and y coordinates for the strings %meshgrid是MATLAB中用于生成网格采样点的函数
[x,y] = meshgrid(1:k);
hStrings=text(x(:),y(:),textStrings(:),'HorizontalAlignment','center');
midValue = mean(get(gca,'CLim')); %# Get the middle value of the color range
textColors = repmat(mat(:) > midValue,1,3); %# Choose white or black for the
%# text color of the strings so
%# they can be easily seen over
%# the background color
%将矩阵[mat(:) >midValue]复制1X3块的矢量(颜色值必须为包含3个元素的数值矢量),即把矩阵[mat(:) > midValue]作为矩阵textColors的元素。
set(hStrings,{'Color'},num2cell(textColors,2)); %# Change the text colors;
%num2cell(textColors, 2)中2 代表「直行被切割」将结构阵列转换成异质阵列 将结构阵列转换成异质阵列;
%然后set去重后放在hStrings; %下面这个数字8可根据自己的分类需求进行更改
set(gca,'XTick',1:8,...
'XTickLabel',{'1','2','3','4','5','6','7',8'},... %# and tick labels
'YTick',1:8,... %同上
'YTickLabel',{'1','2','3','4','5','6','7',8'},...
'TickLength',[0 0]);
%==========================================================
2.主函数main.m
a=xlsread('confusion_test.xls');
%========================================
%真实标签:
act=a(1:194,2:2);
act1=act'; %性别为男生的分开预测的标签
det=a(1:194,1:1);
det1=det'; %性别为男生的未分开预测的标签
dett=a(1:194,3:3);
dett1=dett';
%这里调用confusion_matrix1()函数求的是‘性别为男生的分开预测的标签与真真实标签的混淆矩阵’
confusion_matrix1(act1,det1)
%==========================================================
注意:
ctual:就是我们已知的label。
detected是我们通过模型预测得到的label
结合下面语句实现:
[pred,acc,preb] = svmpredict(double(testLabel), testData, model, '-b 1');
上述程序只需要在confusion_matrix1.m文件中将含有(act1,det1)的参数改成自己需要求的参数,然后在主程序中调用此函数就OK了!(代码可复制直接运行)
3.运行结果:
参考文献:
[1].https://baike.baidu.com/item/%E6%B7%B7%E6%B7%86%E7%9F%A9%E9%98%B5/10087822?fr=aladdin
[2].http://blog.csdn.net/songchaomail/article/details/43834741/
[3].http://blog.csdn.net/zhaomengszu/article/details/56283832
混淆矩阵-MATLAB代码详解的更多相关文章
- mIoU混淆矩阵生成函数代码详解
代码参考博客原文: https://blog.csdn.net/jiongnima/article/details/84750819 在原文和原文的引用里,找到了关于mIoU详尽的解释.这里重点解析 ...
- SVM matlab 代码详解说明
x=[0 1 0 1 2 -1];y=[0 0 1 1 2 -1];z=[-1 1 1 -1 1 1]; %其中,(x,y)代表二维的数据点,z 表示相应点的类型属性. data=[1,0;0,1;2 ...
- 【转】小波与小波包、小波包分解与信号重构、小波包能量特征提取 暨 小波包分解后实现按频率大小分布重新排列(Matlab 程序详解)
转:https://blog.csdn.net/cqfdcw/article/details/84995904 小波与小波包.小波包分解与信号重构.小波包能量特征提取 (Matlab 程序详解) ...
- 代码详解:TensorFlow Core带你探索深度神经网络“黑匣子”
来源商业新知网,原标题:代码详解:TensorFlow Core带你探索深度神经网络“黑匣子” 想学TensorFlow?先从低阶API开始吧~某种程度而言,它能够帮助我们更好地理解Tensorflo ...
- 非极大值抑制(NMS,Non-Maximum Suppression)的原理与代码详解
1.NMS的原理 NMS(Non-Maximum Suppression)算法本质是搜索局部极大值,抑制非极大值元素.NMS就是需要根据score矩阵和region的坐标信息,从中找到置信度比较高的b ...
- Github-jcjohnson/torch-rnn代码详解
Github-jcjohnson/torch-rnn代码详解 zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan 2016-3- ...
- DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解
本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参 ...
- BM算法 Boyer-Moore高质量实现代码详解与算法详解
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...
- ASP.NET MVC 5 学习教程:生成的代码详解
原文 ASP.NET MVC 5 学习教程:生成的代码详解 起飞网 ASP.NET MVC 5 学习教程目录: 添加控制器 添加视图 修改视图和布局页 控制器传递数据给视图 添加模型 创建连接字符串 ...
随机推荐
- 运用wxs制作微信小程序左滑功能和跳转,性能更优越
锲子 微信小程序自定义左滑功能加上跳转,换成以往,左滑功能的逻辑一般是在js中实现,但在拖动方面,性能并不是那么的流畅.如今,官方新扩展了一套脚本语言wxs,在IOS设备上运行,性能会比JS快2~20 ...
- MIT线性代数:20.克拉默法则,逆矩阵和体积
- 用selenium实现打码平台
注:本文以 人人网登陆 为例 import time from selenium import webdriver # 准备一个名为yudama的py文件 from yudama import in ...
- 记录一些html5和css3的一部分属性
html5 标签1 video:视频 属性: src:视频的url autoplay:视频在就绪后马上播放 controls:向用户显示控件2 audio:音频 属性类似于video3 属性:drag ...
- 如何在Vue项目中使用Typescript
0.前言 本快速入门指南将会教你如何在Vue项目中使用TypeScript进行开发.本指南非常灵活,它可以将TypeScript集成到现有的Vue项目中任何一个阶段. 1.初始化项目 首先,创建一个新 ...
- Unix/Linux 从哪儿来?那些改变世界的人们...
昨天看文章时发现自己对 linux 操作系统不够了解,还记得 17 年时听过老师的一些课,对 linux 的历史有一点了解,不过当时并没有记录笔记,现在已经忘的差不多了. 这次从网上找资料,又重新看了 ...
- C++ 11新标准实现POJ No.1002-487-3279
487-3279(重复的电话号码查询)(标签:优先队列,哈希表) 题目描述 企业喜欢用容易被记住的电话号码.让电话号码容易被记住的一个办法是将它写成一个容易记住的单词或者短语.例如,你需要给滑铁卢大学 ...
- CSS3解决字母不换行的方法
CSS3解决字母不换行的方法 <pre>word-wrap: break-word;</pre>
- Redis持久化的几种方式——深入解析RDB
Redis 的读写都是在内存中,所以它的性能较高,但在内存中的数据会随着服务器的重启而丢失,为了保证数据不丢失,我们需要将内存中的数据存储到磁盘,以便 Redis 重启时能够从磁盘中恢复原有的数据,而 ...
- 利用GitHub Pages + jekyll快速搭建个人博客
前言 想搭建自己博客很久了(虽然搭了也不见得能产出多频繁). 最初萌生想写自己博客的想法,想象中,是自己一行一行码出来的成品,对众多快速构建+模板式搭建不屑一顾,也是那段时间给闲的,从前后端选型.数据 ...