[Luogu2973][USACO10HOL]赶小猪Driving Out the Piggi…
题目描述
The Cows have constructed a randomized stink bomb for the purpose of driving away the Piggies. The Piggy civilization consists of N (2 <= N <= 300) Piggy cities conveniently numbered 1..N connected by M (1 <= M <= 44,850) bidirectional roads specified by their distinct endpoints A_j and B_j (1 <= A_j <= N; 1 <= B_j <= N). Piggy city 1 is always connected to at least one other city.
The stink bomb is deployed in Piggy city 1. Each hour (including the first one), it has a P/Q (1 <= P <= 1,000,000; 1 <= Q <=
1,000,000; P <= Q) chance of polluting the city it occupies. If it does not go off, it chooses a random road out of the city and follows it until it reaches a new city. All roads out of a city are equally likely to be chosen.
Because of the random nature of the stink bomb, the Cows are wondering which cities are most likely to be polluted. Given a map of the Piggy civilization and the probability that the stink bomb detonates in a given hour, compute for each city the probability that it will be polluted.
For example, suppose that the Piggie civilization consists of two cities connected together and that the stink bomb, which starts in city 1, has a probability of 1/2 of detonating each time it enters a city:
1--2 We have the following possible paths for the stink bomb (where the last entry is the ending city):
1: 1 2: 1-2 3: 1-2-1
4: 1-2-1-2
5: 1-2-1-2-1
etc. To find the probability that the stink bomb ends at city 1, we can add up the probabilities of taking the 1st, 3rd, 5th, ... paths above (specifically, every odd-numbered path in the above list). The probability of taking path number k is exactly (1/2)^k - the bomb must not remain in its city for k - 1 turns (each time with a probability of 1 - 1/2 = 1/2) and then land in the last city
(probability 1/2).
So our probability of ending in city 1 is represented by the sum 1/2 + (1/2)^3 + (1/2)^5 + ... . When we sum these terms infinitely, we will end up with exactly 2/3 as our probability, approximately 0.666666667. This means the probability of landing in city 2 is 1/3, approximately 0.333333333.
Partial feedback will be provided for your first 50 submissions.
一个无向图,节点1有一个炸弹,在每个单位时间内,有p/q的概率在这个节点炸掉,有1-p/q的概率随机选择一条出去的路到其他的节点上。问最终炸弹在每个节点上爆炸的概率。
输入输出格式
输入格式:
* Line 1: Four space separated integers: N, M, P, and Q
* Lines 2..M+1: Line i+1 describes a road with two space separated integers: A_j and B_j
输出格式:
* Lines 1..N: On line i, print the probability that city i
will be destroyed as a floating point number. An answer with an absolute
error of at most 10^-6 will be accepted (note that you should output at
least 6 decimal places for this to take effect).
输入输出样例
2 1 1 2
1 2
0.666666667
0.333333333
做完这道题,我感觉我离完全理解高斯消元又远了一步...
其实,这道题就是“游走”的简化版。
只要求出到每个点的期望次数,然后乘以p/q就是答案。
问题就是怎么样求期望次数。
设f[i]为到i点的期望次数, 于是f[i] = Σ(1/deg[v]) * f[v], v是i的所有相邻的点。
于是高斯消元解决,注意f[1]最后要加1,因为它一开始就经过。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
inline int read(){
int res=;char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch)){res=(res<<)+(res<<)+(ch^);ch=getchar();}
return res;
}
#define eps 1e-13
int n, m, p, q;
int deg[];
double a[][];
struct edge{
int nxt, to;
}ed[*];
int head[], cnt;
inline void add(int x, int y)
{
ed[++cnt] = (edge){head[x], y};
head[x] = cnt;
} inline void Gauss()
{
for (int i = ; i <= n ; i ++)
{
int pivot = i;
for (int j = i + ; j <= n ; j ++)
if (fabs(a[j][i] - a[pivot][i]) <= eps) pivot = j;
if (pivot != i)
for (int j = ; j <= n + ; j ++)
swap(a[i][j], a[pivot][j]);
for (int j = n + ; j >= i ; j --) a[i][j] /= a[i][i];
for (int j = ; j <= n ; j ++)
if (i != j)
for (int k = n + ; k >= i ; k --)
a[j][k] -= a[j][i] * a[i][k];
}
} int main()
{
n = read(), m = read(), p = read(), q = read();
double k = (double) p / (double) q;
for (int i = ; i <= m ; i ++)
{
int x = read(), y = read();
deg[x]++, deg[y]++;
add(x, y), add(y, x);
}
for (int x = ; x <= n ; x ++)
{
a[x][x] = ;
for (int i = head[x] ; i ; i = ed[i].nxt)
{
int to = ed[i].to;
a[x][to] = (- 1.0 / deg[to]) * (1.0 - k);
}
}
a[][n+] = ;
Gauss();
for (int i = ; i <= n ; i ++)
printf("%.9lf\n", k * a[i][n+]);
return ;
}
[Luogu2973][USACO10HOL]赶小猪Driving Out the Piggi…的更多相关文章
- 洛谷2973 [USACO10HOL]赶小猪Driving Out the Piggi… 概率 高斯消元
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - 洛谷2973 题意概括 有N个城市,M条双向道路组成的地图,城市标号为1到N.“西瓜炸弹”放在1号城市,保证城 ...
- Luogu P2973 [USACO10HOL]赶小猪Driving Out the Piggi 后效性DP
有后效性的DP:$f[u]$表示到$u$的期望次数,$f[u]=\Sigma_{(u,v)} (1-\frac{p}{q})*f[v]*deg[v]$,最后答案就是$f[u]*p/q$ 刚开始$f[1 ...
- [Luogu2973][USACO10HOL]赶小猪
Luogu sol 首先解释一波这道题无重边无自环 设\(f_i\)表示\(i\)点上面的答案. 方程 \[f_u=\sum_{v,(u,v)\in E}(1-\frac PQ)\frac{f_v}{ ...
- Luogu2973:[USACO10HOL]赶小猪
题面 Luogu Sol 设\(f[i]\)表示炸弹到\(i\)不爆炸的期望 高斯消元即可 另外,题目中的概率\(p/q\)实际上为\(1-p/q\) 还有,谁能告诉我不加\(EPS\),为什么会输出 ...
- 洛谷P2973 [USACO10HOL]赶小猪(高斯消元 期望)
题意 题目链接 Sol 设\(f[i]\)表示炸弹到达\(i\)这个点的概率,转移的时候考虑从哪个点转移而来 \(f[i] = \sum_{\frac{f(j) * (1 - \frac{p}{q}) ...
- 洛谷P2973 [USACO10HOL]赶小猪
https://www.luogu.org/problemnew/show/P2973 dp一遍,\(f_i=\sum_{edge(i,j)}\frac{f_j\times(1-\frac{P}{Q} ...
- P2973 [USACO10HOL]赶小猪
跟那个某省省选题(具体忘了)游走差不多... 把边搞到点上然后按套路Gauss即可 貌似有人说卡精度,$eps≤1e-13$,然而我$1e-12$也可以过... 代码: #include<cst ...
- [USACO10HOL]赶小猪
嘟嘟嘟 这题和某一类概率题一样,大体思路都是高斯消元解方程. 不过关键还是状态得想明白.刚开始令\(f[i]\)表示炸弹在点\(i\)爆的概率,然后发现这东西根本无法转移(或者说概率本来就是\(\fr ...
- luogu P2973 [USACO10HOL]Driving Out the Piggies G 驱逐猪猡
luogu LINK:驱逐猪猡 bzoj LINK:猪猪快跑 问题是在1时刻有个炸蛋在1号点 这个炸弹有p/q的概率爆炸 如果没有爆炸 那么会有1/di的概率选择一条边跳到另外一个点上重复这个过程. ...
随机推荐
- apache ignite系列(三):数据处理(数据加载,数据并置,数据查询)
使用ignite的一个常见思路就是将现有的关系型数据库中的数据导入到ignite中,然后直接使用ignite中的数据,相当于将ignite作为一个缓存服务,当然ignite的功能远不止于此,下面以 ...
- C++类的this指针详解
这篇文章主要讲解隐式this指针的概念,以及如何使用,包含const 先直接给出一个C++Primer里的类,你可能还不能完全看懂,但是不着急,我们一点点解释 class Sales_data { s ...
- C# 10分钟入门基于WebOffice实现在线编辑文档,实时保存到服务器(所有office,兼容WPS)
今天,他来了(weboffice在线编辑文档). 上次写了一个在线预览的博,当然,效果并不是太理想,但是紧急解决了当时的问题. 后来,小编重新查找资料,求助大牛,终于使用新的方式替换了之前的low方法 ...
- git rebase 与 merge 的那些事儿~(详细图解,通俗易懂)
什么是 rebase? git rebase 你其实可以把它理解成是"重新设置基线",将你的当前分支重新设置开始点.这个时候才能知道你当前分支于你需要比较的分支之间的差异. 原理很 ...
- Java门面模式
一.简介 隐藏系统的复杂性,对外提供统一的访问入口,外部系统访问只通过此暴露出的统一接口访问.是一种结构型模式.封装子系统接口的复杂性,提供统一的对外接口,能够使子系统更加简单的被使用. 二.结构及使 ...
- ##发送post时,设置了utf-8,中文还是乱码?
发送post时,设置了utf-8,中文还是乱码? 我们用HttpUrlConnection或HttpClient发送了post请求,其中有中文,虽然我们两边都设置了utf-8,但还是乱码? 我们在re ...
- Java线程池基础
目录: 一.线程池概述 二.线程池参数 三.线程池的执行过程 四.线程池的主要实现 五.线程池的使用 六.线程池的正确关闭方式 七.线程池参数调优 一.线程池概述 1.线程池类 目前线程池类一般有两个 ...
- kvm-web管理工具webvirtmgr
前言: 使用开源的虚拟化技术,对公司自有的少数服务器进行虚拟化,在满足业务需求的同时,并未增加投入,同时也避免了使用云主机的不便,技术层面,kvm是开源的虚拟化产品,虚拟化性能出众,更重要的是免费!! ...
- opencv目标检测之canny算法
canny canny的目标有3个 低错误率 检测出的边缘都是真正的边缘 定位良好 边缘上的像素点与真正的边缘上的像素点距离应该最小 最小响应 边缘只能标识一次,噪声不应该标注为边缘 canny分几步 ...
- 读《深入理解Elasticsearch》点滴-查询二次评分
理解二次评分 二次评分是指重新计算查询返回文档中指定个数文档的得分,es会截取查询返回的前N个,并使用预定义的二次评分方法来重新计算他们的得分 小结 有时候,我们需要显示查询结果,并且使得页面上靠前文 ...