[Luogu2973][USACO10HOL]赶小猪Driving Out the Piggi…
题目描述
The Cows have constructed a randomized stink bomb for the purpose of driving away the Piggies. The Piggy civilization consists of N (2 <= N <= 300) Piggy cities conveniently numbered 1..N connected by M (1 <= M <= 44,850) bidirectional roads specified by their distinct endpoints A_j and B_j (1 <= A_j <= N; 1 <= B_j <= N). Piggy city 1 is always connected to at least one other city.
The stink bomb is deployed in Piggy city 1. Each hour (including the first one), it has a P/Q (1 <= P <= 1,000,000; 1 <= Q <=
1,000,000; P <= Q) chance of polluting the city it occupies. If it does not go off, it chooses a random road out of the city and follows it until it reaches a new city. All roads out of a city are equally likely to be chosen.
Because of the random nature of the stink bomb, the Cows are wondering which cities are most likely to be polluted. Given a map of the Piggy civilization and the probability that the stink bomb detonates in a given hour, compute for each city the probability that it will be polluted.
For example, suppose that the Piggie civilization consists of two cities connected together and that the stink bomb, which starts in city 1, has a probability of 1/2 of detonating each time it enters a city:
1--2 We have the following possible paths for the stink bomb (where the last entry is the ending city):
1: 1 2: 1-2 3: 1-2-1
4: 1-2-1-2
5: 1-2-1-2-1
etc. To find the probability that the stink bomb ends at city 1, we can add up the probabilities of taking the 1st, 3rd, 5th, ... paths above (specifically, every odd-numbered path in the above list). The probability of taking path number k is exactly (1/2)^k - the bomb must not remain in its city for k - 1 turns (each time with a probability of 1 - 1/2 = 1/2) and then land in the last city
(probability 1/2).
So our probability of ending in city 1 is represented by the sum 1/2 + (1/2)^3 + (1/2)^5 + ... . When we sum these terms infinitely, we will end up with exactly 2/3 as our probability, approximately 0.666666667. This means the probability of landing in city 2 is 1/3, approximately 0.333333333.
Partial feedback will be provided for your first 50 submissions.
一个无向图,节点1有一个炸弹,在每个单位时间内,有p/q的概率在这个节点炸掉,有1-p/q的概率随机选择一条出去的路到其他的节点上。问最终炸弹在每个节点上爆炸的概率。
输入输出格式
输入格式:
* Line 1: Four space separated integers: N, M, P, and Q
* Lines 2..M+1: Line i+1 describes a road with two space separated integers: A_j and B_j
输出格式:
* Lines 1..N: On line i, print the probability that city i
will be destroyed as a floating point number. An answer with an absolute
error of at most 10^-6 will be accepted (note that you should output at
least 6 decimal places for this to take effect).
输入输出样例
2 1 1 2
1 2
0.666666667
0.333333333
做完这道题,我感觉我离完全理解高斯消元又远了一步...
其实,这道题就是“游走”的简化版。
只要求出到每个点的期望次数,然后乘以p/q就是答案。
问题就是怎么样求期望次数。
设f[i]为到i点的期望次数, 于是f[i] = Σ(1/deg[v]) * f[v], v是i的所有相邻的点。
于是高斯消元解决,注意f[1]最后要加1,因为它一开始就经过。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
inline int read(){
int res=;char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch)){res=(res<<)+(res<<)+(ch^);ch=getchar();}
return res;
}
#define eps 1e-13
int n, m, p, q;
int deg[];
double a[][];
struct edge{
int nxt, to;
}ed[*];
int head[], cnt;
inline void add(int x, int y)
{
ed[++cnt] = (edge){head[x], y};
head[x] = cnt;
} inline void Gauss()
{
for (int i = ; i <= n ; i ++)
{
int pivot = i;
for (int j = i + ; j <= n ; j ++)
if (fabs(a[j][i] - a[pivot][i]) <= eps) pivot = j;
if (pivot != i)
for (int j = ; j <= n + ; j ++)
swap(a[i][j], a[pivot][j]);
for (int j = n + ; j >= i ; j --) a[i][j] /= a[i][i];
for (int j = ; j <= n ; j ++)
if (i != j)
for (int k = n + ; k >= i ; k --)
a[j][k] -= a[j][i] * a[i][k];
}
} int main()
{
n = read(), m = read(), p = read(), q = read();
double k = (double) p / (double) q;
for (int i = ; i <= m ; i ++)
{
int x = read(), y = read();
deg[x]++, deg[y]++;
add(x, y), add(y, x);
}
for (int x = ; x <= n ; x ++)
{
a[x][x] = ;
for (int i = head[x] ; i ; i = ed[i].nxt)
{
int to = ed[i].to;
a[x][to] = (- 1.0 / deg[to]) * (1.0 - k);
}
}
a[][n+] = ;
Gauss();
for (int i = ; i <= n ; i ++)
printf("%.9lf\n", k * a[i][n+]);
return ;
}
[Luogu2973][USACO10HOL]赶小猪Driving Out the Piggi…的更多相关文章
- 洛谷2973 [USACO10HOL]赶小猪Driving Out the Piggi… 概率 高斯消元
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - 洛谷2973 题意概括 有N个城市,M条双向道路组成的地图,城市标号为1到N.“西瓜炸弹”放在1号城市,保证城 ...
- Luogu P2973 [USACO10HOL]赶小猪Driving Out the Piggi 后效性DP
有后效性的DP:$f[u]$表示到$u$的期望次数,$f[u]=\Sigma_{(u,v)} (1-\frac{p}{q})*f[v]*deg[v]$,最后答案就是$f[u]*p/q$ 刚开始$f[1 ...
- [Luogu2973][USACO10HOL]赶小猪
Luogu sol 首先解释一波这道题无重边无自环 设\(f_i\)表示\(i\)点上面的答案. 方程 \[f_u=\sum_{v,(u,v)\in E}(1-\frac PQ)\frac{f_v}{ ...
- Luogu2973:[USACO10HOL]赶小猪
题面 Luogu Sol 设\(f[i]\)表示炸弹到\(i\)不爆炸的期望 高斯消元即可 另外,题目中的概率\(p/q\)实际上为\(1-p/q\) 还有,谁能告诉我不加\(EPS\),为什么会输出 ...
- 洛谷P2973 [USACO10HOL]赶小猪(高斯消元 期望)
题意 题目链接 Sol 设\(f[i]\)表示炸弹到达\(i\)这个点的概率,转移的时候考虑从哪个点转移而来 \(f[i] = \sum_{\frac{f(j) * (1 - \frac{p}{q}) ...
- 洛谷P2973 [USACO10HOL]赶小猪
https://www.luogu.org/problemnew/show/P2973 dp一遍,\(f_i=\sum_{edge(i,j)}\frac{f_j\times(1-\frac{P}{Q} ...
- P2973 [USACO10HOL]赶小猪
跟那个某省省选题(具体忘了)游走差不多... 把边搞到点上然后按套路Gauss即可 貌似有人说卡精度,$eps≤1e-13$,然而我$1e-12$也可以过... 代码: #include<cst ...
- [USACO10HOL]赶小猪
嘟嘟嘟 这题和某一类概率题一样,大体思路都是高斯消元解方程. 不过关键还是状态得想明白.刚开始令\(f[i]\)表示炸弹在点\(i\)爆的概率,然后发现这东西根本无法转移(或者说概率本来就是\(\fr ...
- luogu P2973 [USACO10HOL]Driving Out the Piggies G 驱逐猪猡
luogu LINK:驱逐猪猡 bzoj LINK:猪猪快跑 问题是在1时刻有个炸蛋在1号点 这个炸弹有p/q的概率爆炸 如果没有爆炸 那么会有1/di的概率选择一条边跳到另外一个点上重复这个过程. ...
随机推荐
- response中文乱码问题
1.要确定I代码的编码格式为UTF-8 2.乱码原因:浏览器和服务器的编码格式不同: 服务器的默认编码为:ISO-8859-1,如果浏览器的编码不是ISO-8859-1,就会出现乱码: public ...
- Mac搭建pyhton+selenium+pycharm实现web自动化测试
安装pip或者安装pip3: sudo easy_install pip 二选一安装 sudo easy_install python3-pip 安装selenium: sudo pip3 insta ...
- Anaconda、TensorFlow安装和Pycharm配置详细教程,亲测有效!
目录 1.Anaconda下载与安装 2.Anaconda安装成功与否测试 3.安装python 4.检查TensorFlow环境添加成功与否 5.TensorFlow安装 6.测试TensorFlo ...
- SpringBootSecurity学习(01)网页版登录入门介绍
Web应用安全管理 Web应用的安全管理,主要包括两个方面的内容,一个是用户身份的认证,即用户登录的设计,二是用户授权,即一个用户在一个应用系统中能够执行哪些操作的权限管理.权限管理的设计一般使用角色 ...
- Postman 之 HTTP Multipart/form-data 调试
无论是前端,还是后端开发,HTTP 接口的使用率实在是太高了.开发好了特定的 HTTP 接口,没有一个好的测试工具,怎么可以呢? 而 Postman 就是一款好用的爱不释手的测试工具,谁用谁说爽. 接 ...
- ETL-Kettle学习笔记(入门,简介,简单操作)
KETTLE Kettle:简介 ETL:简介 ETL(Extract-Transform-Load的缩写,即数据抽取.转换.装载的过程),对于企业或行业应用来说,我们经常会遇到各种数据的处理,转换, ...
- 如何优雅的使用springboot项目内置tomcat
问题:以前,我们在使用SSM框架的时候,都是通过外置的tomcat进行部署,如果想访问文件,直接拖到项目的根目录下面即可.假如我们需要放一个apk文件,然后让别人下载,只需将apk放到项目根目录下面, ...
- 如何让谷歌浏览器支持小于12px的字体
CSS3有个新的属性transform,而我们用到的就是transform:scale() 书写一段代码 <body> <p>我是一个小于12PX的字体</p> & ...
- VS2010连接Oracle配置
直接看上图.EZ连接和TNS连接.TNS连接要修改tnsnames.tns文件内部的host为服务器地址
- Kafka 学习笔记之 Topic日志清理
Topic日志清理 server.properties: log.cleanup.policy=delete (默认) 1. 按时间维度进行Kafka日志清理 log.retention.hours= ...