[HAOI2018]苹果树

cx巨巨给我的大火题.

感觉这题和上次考试gcz讲的那道有标号树的形态(不记顺序)计数问题很类似.

考虑如果对每个点对它算有贡献的其他点很麻烦,不知怎么下手.这个时候就想到换一种思路,算每一条边有多少对点经过,很自然的想到状态\(dp[i][j]\)表示树标号到i,i子树的节点sz大小为j.这题是有标号的,先考虑无标号,那么i子树的形态一共有\(j!\)种.

i之上的树的形态(有先后顺序区别)有多少怎么算呢?已经到i了,说明前i个节点的形态已经确定,有\(i!\)种形态.

由于除了\((i-1)+j\)两部分以外,剩下的点有\(n-j-i+1\)个,这些点依次插入i的祖先们的子树中,第一次有\(i-1\),第二次有\(i\),然后\(i+1,i+2,...,i-2+(n-j-i+1)\)乘起来就是\(\frac{(n-j-1)!}{(i-2)!}\),分母可以和\(i!\)约掉.

考虑有标号,就是在\(n-i\)个点里选&j-1&个放在i子树里,其他的插在别的子树,那么就是乘以\(C_{n-i}^{j-1}\)

再就是贡献还要乘上\(j(n-j)\)

所以

\[\begin{align}
f[i][j]=\frac{(n-j-1)!}{(i-2)!}*i!*j*(n-j)*C_{n-i}^{j-1}*j!\\
=(n-j)!*i*(i-1)*C_{n-i}^{j-1}*j!
\end{align}
\]

这题注意p不是质数,不可以求逆元算.

#include<bits/stdc++.h>
#define maxn 3005
#define ll long long
using namespace std;
int inv[maxn],fac[maxn],dp[maxn][maxn];
int mod,n,ans,c[maxn][maxn];
//int C(int n,int m){return (ll)fac[n]*fac[m]%mod*fac[n-m]%mod;}
int main()
{
cin>>n>>mod;fac[0]=inv[1]=inv[0]=1;
for(int i=1;i<=n;i++)fac[i]=(ll)fac[i-1]*i%mod;
//for(int i=2;i<=n;i++)inv[i]=(mod-(ll)(mod/i)*inv[mod%i]%mod)%mod;
//for(int i=2;i<=n;i++)inv[i]=(ll)inv[i-1]*inv[i]%mod;
for(int i=0;i<=n;i++)c[i][0]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
dp[i][j]=(ll)fac[j]*fac[n-j]%mod*i%mod*(i-1)%mod*j%mod*c[n-i][j-1]%mod;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)ans+=dp[i][j],ans%=mod;
cout<<ans<<endl;
return 0;
}

[HAOI2018]苹果树(组合数学,计数)的更多相关文章

  1. [BZOJ5305][HAOI2018]苹果树 组合数学

    链接 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一天, ...

  2. BZOJ.5305.[HAOI2018]苹果树(组合 计数)

    LOJ BZOJ 洛谷 BZOJ上除了0ms的Rank1啦.明明这题常数很好优化的. 首先,\(n=1\)时有\(2\)个位置放叶子,\(n=2\)时有\(3\)个... 可知\(n\)个点的有标号二 ...

  3. luoguP4492 [HAOI2018]苹果树 组合计数 + dp

    首先,每个二叉树对应着唯一的中序遍历,并且每个二叉树的概率是相同的 这十分的有用 考虑\(dp\)求解 令\(f_i\)表示\(i\)个节点的子树,根的深度为\(1\)时,所有点的期望深度之和(乘\( ...

  4. BZOJ 5305: [Haoi2018]苹果树 组合计数

    一定要注意要乘阶乘,细节很多. code: #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s ...

  5. 【BZOJ5305】[HAOI2018]苹果树(组合计数)

    [BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...

  6. [洛谷P4492] [HAOI2018]苹果树

    洛谷题目链接:[HAOI2018]苹果树 题目背景 HAOI2018 Round2 第一题 题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C ...

  7. [BZOJ5305] [HAOI2018] 苹果树 数学 组合计数

    Summary 题意很清楚: 小 \(C\) 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 \(C\) 发现每一天这棵树都会生长出一个新的结点. 第一天的时候 ...

  8. BZOJ5305 [Haoi2018]苹果树 【组合数学】

    题目链接 BZOJ5305 题解 妙啊 要求的是所有可能的树形的所有点对距离和 直接考虑点的贡献肯定想不出,这样的所有点对距离问题通常转化为边的贡献 考虑一条边会产生多少贡献 我们枚举\(i\)节点的 ...

  9. [HAOI2018]苹果树(组合数学)

    首先有个很奇妙而且很有用的性质:每个二叉树对应唯一的中序遍历,然后每个二叉树出现概率相同.所以n个节点的二叉树形态是n!种(题目中说了*n!已经是提示了),对每种方案求和即可得到期望.令f[i]表示i ...

随机推荐

  1. python爬取新浪股票数据—绘图【原创分享】

    目标:不做蜡烛图,只用折线图绘图,绘出四条线之间的关系. 注:未使用接口,仅爬虫学习,不做任何违法操作. """ 新浪财经,爬取历史股票数据 ""&q ...

  2. python之unittest框架实现接口测试实例

    python之unittest框架实现接口测试实例 接口测试的方法有很多种,具体到工具有postman,jmeter,fiddler等,但是工具的局限性是测试数据的组织较差,接口的返回工具的判断有限, ...

  3. TensorFlow笔记-线程和队列

    线程和队列 在使用TensorFlow进行异步计算时,队列是一种强大的机制. 为了感受一下队列,让我们来看一个简单的例子.我们先创建一个“先入先出”的队列(FIFOQueue),并将其内部所有元素初始 ...

  4. 2-1. 基于OpenSSL的传输子系统实现

    一. 基本传输子系统程序设计 客户端可上传文件至服务器,或下载服务器上的文件 系统程序构架: 客户端 服务器 TCP建立连接 menu()-> 上传命令.下载命令 close(socket) T ...

  5. 深入了解数据校验:Java Bean Validation 2.0(JSR380)

    每篇一句 吾皇一日不退役,尔等都是臣子 相关阅读 [小家Java]深入了解数据校验(Bean Validation):基础类打点(ValidationProvider.ConstraintDescri ...

  6. 使用redis分布式锁解决并发线程资源共享问题

    众所周知, 在多线程中,因为共享全局变量,会导致资源修改结果不一致,所以需要加锁来解决这个问题,保证同一时间只有一个线程对资源进行操作 但是在分布式架构中,我们的服务可能会有n个实例,但线程锁只对同一 ...

  7. Lombok 使用介绍(常见注解)

    目录 @Data @NonNull @Getter & @Setter @ToString @EqualsAndHashCode @NoArgsConstructor, @RequiredAr ...

  8. 在Docker中部署Spring Boot项目

    想要获取更多文章可以访问我的博客 - 代码无止境. 微服务现在在互联网公司可谓非常流行了,之前找工作的的时候很多HR电话约面试的时候都会问对微服务是否有过接触.而微服务和Docker可以非常完美的结合 ...

  9. MySql性能优化读书比较<一> 数据类型

    一,选择优化的数据类型 1.更小的通常更好. 更小的数据类型通常占用更少的磁盘,内存和cpu缓存,通常更快. 2.简单就好 简单的数据类型操作,通常需要更少的CPU周期. 3.尽量避免NULL值 列可 ...

  10. WebGL简易教程(一):第一个简单示例

    目录 1. 概述 2. 示例:绘制一个点 1) HelloPoint1.html 2) HelloPoint1.js (1) 准备工作 (2) 着色器 (3) 顶点着色器 (4) 片元着色器 (5) ...