本文摘录整编了一些理论介绍,推导了word2vec中的数学原理,理论部分大量参考《word2vec中的数学原理详解》。

背景

语言模型

  在统计自然语言处理中,语言模型指的是计算一个句子的概率模型。

  传统的语言模型中词的表示是原始的、面向字符串的。两个语义相似的词的字符串可能完全不同,比如“番茄”和“西红柿”。这给所有NLP任务都带来了挑战——字符串本身无法储存语义信息。该挑战突出表现在模型的平滑问题上:标注语料是有限的,而语言整体是无限的,传统模型无法借力未标注的海量语料,只能靠人工设计平滑算法,而这些算法往往效果甚微。

  神经概率语言模型(Neural Probabilistic Language Model)中词的表示是向量形式、面向语义的。两个语义相似的词对应的向量也是相似的,具体反映在夹角或距离上。甚至一些语义相似的二元词组中的词语对应的向量做线性减法之后得到的向量依然是相似的。词的向量表示可以显著提高传统NLP任务的性能,例如《基于神经网络的高性能依存句法分析器》中介绍的词、词性、依存关系的向量化对正确率的提升等。

  从向量的角度来看,字符串形式的词语其实是更高维、更稀疏的向量。若词汇表大小为N,每个字符串形式的词语字典序为i,则其被表示为一个N维向量,该向量的第i维为1,其他维都为0。汉语的词汇量大约在十万这个量级,十万维的向量对计算来讲绝对是个维度灾难。而word2vec得到的词的向量形式(下文简称“词向量”,更学术化的翻译是“词嵌入”)则可以自由控制维度,一般是100左右。

word2vec

  word2vec作为神经概率语言模型的输入,其本身其实是神经概率模型的副产品,是为了通过神经网络学习某个语言模型而产生的中间结果。具体来说,“某个语言模型”指的是“CBOW”和“Skip-gram”。具体学习过程会用到两个降低复杂度的近似方法——Hierarchical Softmax或Negative Sampling。两个模型乘以两种方法,一共有四种实现。本文理论部分要详细阐明的是“CBOW”模型以及Hierarchical Softmax方法。

Hierarchical Softmax

模型共同点

  无论是哪种模型,其基本网络结构都是在下图的基础上,省略掉hidden layer:

  为什么要去掉这一层呢?据说是因为word2vec的作者嫌从hidden layer到output layer的矩阵运算太多了。于是两种模型的网络结构是:

  其中w(t)代表当前词语位于句子的位置t,同理定义其他记号。在窗口内(上图为窗口大小为5),除了当前词语之外的其他词语共同构成上下文。

CBOW

原理

  CBOW 是 Continuous Bag-of-Words Model 的缩写,是一种根据上下文的词语预测当前词语的出现概率的模型。其图示如上图左。

  CBOW是已知上下文,估算当前词语的语言模型。其学习目标是最大化对数似然函数:

  其中,w表示语料库C中任意一个词。从上图可以看出,对于CBOW,

  输入层是上下文的词语的词向量(什么!我们不是在训练词向量吗?不不不,我们是在训练CBOW模型,词向量只是个副产品,确切来说,是CBOW模型的一个参数。训练开始的时候,词向量是个随机值,随着训练的进行不断被更新)。

  投影层对其求和,所谓求和,就是简单的向量加法。

  输出层输出最可能的w。由于语料库中词汇量是固定的|C|个,所以上述过程其实可以看做一个多分类问题。给定特征,从|C|个分类中挑一个。

  对于神经网络模型多分类,最朴素的做法是softmax回归:

  softmax回归需要对语料库中每个词语(类)都计算一遍输出概率并进行归一化,在几十万词汇量的语料上无疑是令人头疼的。

  不用softmax怎么样?比如SVM中的多分类,我们都知道其多分类是由二分类组合而来的:

  这是一种二叉树结构,应用到word2vec中被作者称为Hierarchical Softmax:

  上图输出层的树形结构即为Hierarchical Softmax。

  非叶子节点相当于一个神经元(感知机,我认为逻辑斯谛回归就是感知机的输出代入f(x)=1/(1+e^x)),二分类决策输出1或0,分别代表向下左转或向下右转;每个叶子节点代表语料库中的一个词语,于是每个词语都可以被01唯一地编码,并且其编码序列对应一个事件序列,于是我们可以计算条件概率

  在开始计算之前,还是得引入一些符号:

  1. 从根结点出发到达w对应叶子结点的路径.

  2. 路径中包含结点的个数

  3. 路径中的各个节点

  4. 词w的编码,表示路径第j个节点对应的编码(根节点无编码)

  5. 路径中非叶节点对应的参数向量

  在训练阶段,当给定一个上下文,要预测后面的词(Wn)的时候(word2vec的CBOW和Skip-gram都不是预测后面的词,都是在中间的词上做文章,但是本文这么写并不影响理解),实际上我们知道要的是哪个词(Wn),而Wn是肯定存在于二叉树的叶子节点的,因此它必然有一个二进制编号,如”010011″,那么接下来我们就从二叉树的根节点一个个地去遍历,而这里的目标就是预测这个词的二进制编号的每一位!即对于给定的上下文,我们的目标是使得预测词的二进制编码概率最大。我们给出w的条件概率:

  这是个简单明了的式子,从根节点到叶节点经过了-1个节点,编码从下标2开始(根节点无编码),对应的参数向量下标从1开始(根节点为1)。

其中,每一项是一个逻辑斯谛回归:

  考虑到d只有0和1两种取值,我们可以用指数形式方便地将其写到一起:

  我们的目标函数取对数似然:

  将代入上式,有

  这也很直白,连乘的对数换成求和。不过还是有点长,我们把每一项简记为:

  怎么最大化对数似然函数呢?分别最大化每一项即可(这应该是一种近似,最大化某一项不一定使整体增大,具体收敛的证明还不清楚)。怎么最大化每一项呢?先求函数对每个变量的偏导数,对每一个样本,代入偏导数表达式得到函数在该维度的增长梯度,然后让对应参数加上这个梯度,函数在这个维度上就增长了。这种白话描述的算法在学术上叫随机梯度上升法,详见更规范的描述

  每一项有两个参数,一个是每个节点的参数向量,另一个是输出层的输入,我们分别对其求偏导数:

  因为sigmoid函数的导数有个很棒的形式:

  于是代入上上式得到:

  合并同类项得到:

  于是的更新表达式就得到了:

  其中,是机器学习的老相好——学习率,通常取0-1之间的一个值。学习率越大训练速度越快,但目标函数容易在局部区域来回抖动。

  再来的偏导数,注意到是对称的,所有直接将的偏导数中的替换为,得到关于的偏导数:

  于是的更新表达式也得到了。

  不过是上下文的词向量的和,不是上下文单个词的词向量。怎么把这个更新量应用到单个词的词向量上去呢?word2vec采取的是直接将的更新量整个应用到每个单词的词向量上去:

  其中,代表上下文中某一个单词的词向量。我认为应该也可以将其平均后更新到每个词向量上去,无非是学习率的不同,欢迎指正。

  如果没有使用这种二叉树,而是直接从隐层直接计算每一个输出的概率——即传统的softmax,就需要对|V|中的每一个词都算一遍,这个过程时间复杂度是O(|V|)的。而使用了二叉树(如word2vec中的Huffman树),其时间复杂度就降到了O(log2(|V|)),速度大大地加快了。

参考文献:

1. http://www.hankcs.com/nlp/word2vec.html

word2vec原理分析的更多相关文章

  1. word2vec原理(一) CBOW与Skip-Gram模型基础

    word2vec原理(一) CBOW与Skip-Gram模型基础 word2vec原理(二) 基于Hierarchical Softmax的模型 word2vec原理(三) 基于Negative Sa ...

  2. word2vec原理(一) CBOW与Skip-Gram模型基础——转载自刘建平Pinard

    转载来源:http://www.cnblogs.com/pinard/p/7160330.html word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量化,这样词与 ...

  3. word2vec原理(一) CBOW+Skip-Gram模型基础

    word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系.本文的讲解word2vec原理以Githu ...

  4. word2vec原理CBOW与Skip-Gram模型基础

    转自http://www.cnblogs.com/pinard/p/7160330.html刘建平Pinard word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量 ...

  5. Handler系列之原理分析

    上一节我们讲解了Handler的基本使用方法,也是平时大家用到的最多的使用方式.那么本节让我们来学习一下Handler的工作原理吧!!! 我们知道Android中我们只能在ui线程(主线程)更新ui信 ...

  6. Java NIO使用及原理分析(1-4)(转)

    转载的原文章也找不到!从以下博客中找到http://blog.csdn.net/wuxianglong/article/details/6604817 转载自:李会军•宁静致远 最近由于工作关系要做一 ...

  7. 原子类java.util.concurrent.atomic.*原理分析

    原子类java.util.concurrent.atomic.*原理分析 在并发编程下,原子操作类的应用可以说是无处不在的.为解决线程安全的读写提供了很大的便利. 原子类保证原子的两个关键的点就是:可 ...

  8. Android中Input型输入设备驱动原理分析(一)

    转自:http://blog.csdn.net/eilianlau/article/details/6969361 话说Android中Event输入设备驱动原理分析还不如说Linux输入子系统呢,反 ...

  9. 转载:AbstractQueuedSynchronizer的介绍和原理分析

    简介 提供了一个基于FIFO队列,可以用于构建锁或者其他相关同步装置的基础框架.该同步器(以下简称同步器)利用了一个int来表示状态,期望它能够成为实现大部分同步需求的基础.使用的方法是继承,子类通过 ...

随机推荐

  1. NioEventLoopGroup初始化

    本文是我对Netty的NioEventLoopGroup及NioEventLoop初始化工作的源码阅读笔记, 如下图,是Netty的Reactor线程模型图,本文描述NioEventLoopGroup ...

  2. git rebase VS git merge? 更优雅的 git 合并方式值得拥有

    写在前面 如果你不能很好的应用 Git,那么这里为你提供一个非常棒的 Git 在线练习工具 Git Online ,你可以更直观的看到你所使用的命令会产生什么效果 另外,你在使用 Git 合并分支时只 ...

  3. k8s学习 - 概念 - ReplicationController

    k8s学习 - 概念 - ReplicationController 我们有了 pod,那么就需要对 pod 进行控制,就是同一个服务的 podv我需要启动几个?如果需要扩容了,怎么办?这里就有个控制 ...

  4. android_layout_relativelayout(二)

    官网上的一个xml文件: <?xml version="1.0" encoding="utf-8"?><RelativeLayout xmln ...

  5. 转载《Flex 布局》

    网页布局(layout)是 CSS 的一个重点应用. 布局的传统解决方案,基于盒状模型,依赖 display 属性 + position属性 + float属性.它对于那些特殊布局非常不方便,比如,垂 ...

  6. Java异常与处理机制

    Java的异常层次体系 Java的所有异常对象都派生自Throwable类,下层有两个分支:error和exception. Error分支描述Java运行时系统内部错误或资源耗尽错误,遇到派生自Er ...

  7. java-org.springframework.core.convert.ConversionFailedException- 前端传string解析date异常

    关于SpringMVC前台日期作为实体类对象参数类型转换错误解决 异常信息: Field error in object 'tblHouse' on field 'houseTime': reject ...

  8. cesium 学习(四) Hello World

    一.前言 之前的文章都是基础,搭建环境.部署Cesium.学习资料等等.现在简单入手,一个Hello World页面开发. 二.Hello World 感觉Hello World没有什么特别需要讲的, ...

  9. webstorm mac 版破解

    一.打开终端,输入: sudo vim /etc/hosts 回车后输入密码,编辑 hosts 文件,如图: 二.进入编辑模式(按 i 键),在最后一行添加如下代码: 0.0.0.0 account. ...

  10. JasperReport报表

    最近在做报表工作,公司要求使用正版免费的报表软件,想想还是用JasperReport. JasperReport是一个纯Java写的开源免费报表工具库,在java开源免费报表中,排在前列. 可是开源免 ...