Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学
F2. Wrong Answer on test 233 (Hard Version)
Your program fails again. This time it gets "Wrong answer on test 233"
.
This is the harder version of the problem. In this version, 1≤n≤2⋅105. You can hack this problem if you locked it. But you can hack the previous problem only if you locked both problems.
The problem is to finish n one-choice-questions. Each of the questions contains k options, and only one of them is correct. The answer to the i-th question is hi, and if your answer of the question i is hi, you earn 1 point, otherwise, you earn 0 points for this question. The values h1,h2,…,hn are known to you in this problem.
However, you have a mistake in your program. It moves the answer clockwise! Consider all the n answers are written in a circle. Due to the mistake in your program, they are shifted by one cyclically.
Formally, the mistake moves the answer for the question i to the question imodn+1. So it moves the answer for the question 1 to question 2, the answer for the question 2 to the question 3, ..., the answer for the question n to the question 1.
We call all the n answers together an answer suit. There are kn possible answer suits in total.
You're wondering, how many answer suits satisfy the following condition: after moving clockwise by 1, the total number of points of the new answer suit is strictly larger than the number of points of the old one. You need to find the answer modulo 998244353.
For example, if n=5, and your answer suit is a=[1,2,3,4,5], it will submitted as a′=[5,1,2,3,4] because of a mistake. If the correct answer suit is h=[5,2,2,3,4], the answer suit a earns 1 point and the answer suite a′ earns 4 points. Since 4>1, the answer suit a=[1,2,3,4,5] should be counted.
Input
The first line contains two integers n, k (1≤n≤2⋅105, 1≤k≤109) — the number of questions and the number of possible answers to each question.
The following line contains n integers h1,h2,…,hn, (1≤hi≤k) — answers to the questions.
Output
Output one integer: the number of answers suits satisfying the given condition, modulo 998244353.
Examples
input
3 3
1 3 1
output
9
input
5 5
1 1 4 2 2
output
1000
input
6 2
1 1 2 2 1 1
output
16
Note
For the first example, valid answer suits are [2,1,1],[2,1,2],[2,1,3],[3,1,1],[3,1,2],[3,1,3],[3,2,1],[3,2,2],[3,2,3].
题意
现在有n道题,每道题有k个答案,但是你现在犯傻了,把第一题的答案交到了第二题,第二题交到了第3题,第k题交到了第(k%n)+1题的位置上去。
现在想知道,有多少种填答案的方案,可以使得交换后的正确数量多于交换前的正确数量。
题解
数据范围小的话,dp[i][j]表示现在考虑到了第i题,交换后比交换前多得j分。
那么如果h[i]==h[i+1]的话,dp[i][j]=dp[i-1][j],因为无论如何填什么正确得个数都不会变。
其他情况 dp[i][j] = dp[i-1][j+1]+dp[i-1][j-1]+(k-2)dp[i-1][j],有一种情况是之前对了,转换后错了;之前错了,转换后对了;其他k-2种答案都保持不变。
hard version我们要反着做,假设我们知道最后转换后和转换前分数一样得方案数为ans的话,那么k^n-ans表示的是转换后得分发生改变的方案数。
又因为转换前分数高和转换后分数高的方案数是一样的,因为对称,所以最后答案一定是 (k^n-ans)/2
那么这个ans怎么做呢,假设现在h[i]!=h[i+1]的个数为num个,因为相同的话没有意义,因为填什么都无所谓
我们枚举+1的位置有多少个,C(num,i);同样的-1也得i个C(num-i,i),其他num-2i个位置有k-2种选择(k-2)(num-2i),剩下n-num个位置都有k个选择k(n-num)。
那么i个+1位置的方案数其实就是C(num,i)C(num-i,i)(k-2)(num-2i)k(n-num),最后用所有的方案数减去他再除以2就完事。
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2005;
const int mod = 998244353;
int h[maxn];
long long dp[maxn][maxn*2],base=2003,k,n;
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%d",&h[i]);
if(k==1){
cout<<"0"<<endl;
return 0;
}
dp[0][base]=1;
for(int i=1;i<=n;i++){
for(int j=base-2000;j<=base+2000;j++){
if(h[i]==h[i%n+1]){
dp[i][j]=dp[i-1][j]*k%mod;
}else{
dp[i][j]=(dp[i-1][j+1]+dp[i-1][j-1]+dp[i-1][j]*(k-2))%mod;
}
}
}
long long ans = 0;
for(int i=1;i<=n;i++){
ans=(ans+dp[n][base+i])%mod;
}
cout<<ans<<endl;
}
#include<bits/stdc++.h>
using namespace std;
const long long mod = 998244353;
const int maxn = 2e5+7;
int n,k,h[maxn];
long long powmod(long long a,long long b){
if(b==0)return 1;
return b%2==0?powmod(a*a%mod,b/2):powmod(a*a%mod,b/2)*a%mod;
}
long long fac[maxn],inv[maxn];
long long C(int a,int b){
if(b<0||b>n)return 0;
return (fac[a]*inv[b]%mod)*inv[a-b]%mod;
}
int main(){
fac[0]=inv[0]=1;
for(int i=1;i<maxn;i++){
fac[i]=i*fac[i-1]%mod;
inv[i]=powmod(i,mod-2)*inv[i-1]%mod;
}
cin>>n>>k;
if(k==1){
cout<<"0"<<endl;
return 0;
}
for(int i=0;i<n;i++)
cin>>h[i];
int num = 0;
h[n]=h[0];
for(int i=0;i<n;i++){
if(h[i]!=h[i+1])num++;
}
long long ans = 0;
for(int i=0;i*2<=num;i++){
long long tmp = C(num,i)*C(num-i,i)%mod*powmod(k-2,num-2*i)%mod*powmod(k,n-num);
ans=(ans+tmp)%mod;
}
cout<<((powmod(k,n)-ans+mod)*inv[2])%mod<<endl;
}
Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学的更多相关文章
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3
A,有多个线段,求一条最短的线段长度,能过覆盖到所又线段,例如(2,4)和(5,6) 那么我们需要4 5连起来,长度为1,例如(2,10)(3,11),用(3,10) 思路:我们想一下如果题目说的是最 ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) E. Arson In Berland Forest 二分 前缀和
E. Arson In Berland Forest The Berland Forest can be represented as an infinite cell plane. Every ce ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) D2. Optimal Subsequences (Hard Version) 数据结构 贪心
D2. Optimal Subsequences (Hard Version) This is the harder version of the problem. In this version, ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C. Messy 构造
C. Messy You are fed up with your messy room, so you decided to clean it up. Your room is a bracket ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B. Box 贪心
B. Box Permutation p is a sequence of integers p=[p1,p2,-,pn], consisting of n distinct (unique) pos ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A. Math Problem 水题
A. Math Problem Your math teacher gave you the following problem: There are n segments on the x-axis ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C Messy
//因为可以反转n次 所以可以得到任何可以构成的序列 #include<iostream> #include<string> #include<vector> us ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B Box
#include<bits/stdc++.h> using namespace std; ]; ]; int main() { int total; cin>>total; w ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A Math Problem
//只要从所有区间右端点的最小值覆盖到所有区间左端点的最大值即可 #include<iostream> using namespace std ; int x,y; int n; int ...
随机推荐
- 如何快速找到多个字典中的公共键(key)
from random import randint, sample #sample随机取样 d1 = {k: randint(1, 4) for k in sample('abcdefgh', ra ...
- JSON字符串转Map的几种方法
String json = "{"status":0,"result":{"location":{"lng": ...
- 默认值操作符(Freemarker的空值处理)
默认值操作符: 使用形式例如: userName!default_expr 或 userName! 或 (userName)!default_expr 或 (userName)! 这个操作符允许你为可 ...
- TICK技术栈(五)Kapacitor安装及使用
1.什么是Kapacitor? Kapacitor是InfluxData开源的数据处理引擎.它可以处理来自InfluxDB的流数据和批处理数据,并且用户可以用tickScript脚本来处理,监视和警报 ...
- 数据结构导论 四 线性表的顺序存储VS链式存储
前几章已经介绍到了顺序存储.链式存储 顺序存储:初始化.插入.删除.定位 链式存储:初始化.插入.删除.定位 顺序存储:初始化 strudt student{ int ID://ID char nam ...
- Nginx + FastCGI + Django在windows上部署及nginx常用命令
一般应用都是部署在linux系统上,不会在windows上部署,emmm..所以有兴趣的就瞧瞧吧哈哈 nginx工作原理: nginx用于处理静态文件,动态部分经由fastcgi .scgi或uWSG ...
- Python网络爬虫_Scrapy框架_1.新建项目
在Pycharm中新建一个基于Scrapy框架的爬虫项目(Scrapy库已经导入) 在终端中输入: ''itcast.cn''是为爬虫限定爬取范围 创建完成后的目录 将生成的itcast.py文件移动 ...
- IT兄弟连 HTML5教程 HTML5表单 多样的输入类型2
4 range range类型用于包含一定范围内数字值的输入域,跟number一样,我们还可以对数值设置限定,range类型显示为滑动条用法如下: 上述代码使用了range类型输入框,为该类型设置了 ...
- LeetCode 第70题动态规划算法
导言 看了 动态规划(https://www.cnblogs.com/fivestudy/p/11855853.html)的帖子,觉得写的很好,记录下来. 动态规划问题一直是算法面试当中的重点和难点, ...
- 【重学Git】高级命令篇
1.分离HEAD.HEAD 总是指向当前分支上最近一次提交记录. 所谓分离HEAD,就是让HEAD直接指向某一条具体的提交记录,而不是默认的通过分支名指向当前分支的最近一条提交记录. 2.相对引用^. ...