Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学
F2. Wrong Answer on test 233 (Hard Version)
Your program fails again. This time it gets "Wrong answer on test 233"
.
This is the harder version of the problem. In this version, 1≤n≤2⋅105. You can hack this problem if you locked it. But you can hack the previous problem only if you locked both problems.
The problem is to finish n one-choice-questions. Each of the questions contains k options, and only one of them is correct. The answer to the i-th question is hi, and if your answer of the question i is hi, you earn 1 point, otherwise, you earn 0 points for this question. The values h1,h2,…,hn are known to you in this problem.
However, you have a mistake in your program. It moves the answer clockwise! Consider all the n answers are written in a circle. Due to the mistake in your program, they are shifted by one cyclically.
Formally, the mistake moves the answer for the question i to the question imodn+1. So it moves the answer for the question 1 to question 2, the answer for the question 2 to the question 3, ..., the answer for the question n to the question 1.
We call all the n answers together an answer suit. There are kn possible answer suits in total.
You're wondering, how many answer suits satisfy the following condition: after moving clockwise by 1, the total number of points of the new answer suit is strictly larger than the number of points of the old one. You need to find the answer modulo 998244353.
For example, if n=5, and your answer suit is a=[1,2,3,4,5], it will submitted as a′=[5,1,2,3,4] because of a mistake. If the correct answer suit is h=[5,2,2,3,4], the answer suit a earns 1 point and the answer suite a′ earns 4 points. Since 4>1, the answer suit a=[1,2,3,4,5] should be counted.
Input
The first line contains two integers n, k (1≤n≤2⋅105, 1≤k≤109) — the number of questions and the number of possible answers to each question.
The following line contains n integers h1,h2,…,hn, (1≤hi≤k) — answers to the questions.
Output
Output one integer: the number of answers suits satisfying the given condition, modulo 998244353.
Examples
input
3 3
1 3 1
output
9
input
5 5
1 1 4 2 2
output
1000
input
6 2
1 1 2 2 1 1
output
16
Note
For the first example, valid answer suits are [2,1,1],[2,1,2],[2,1,3],[3,1,1],[3,1,2],[3,1,3],[3,2,1],[3,2,2],[3,2,3].
题意
现在有n道题,每道题有k个答案,但是你现在犯傻了,把第一题的答案交到了第二题,第二题交到了第3题,第k题交到了第(k%n)+1题的位置上去。
现在想知道,有多少种填答案的方案,可以使得交换后的正确数量多于交换前的正确数量。
题解
数据范围小的话,dp[i][j]表示现在考虑到了第i题,交换后比交换前多得j分。
那么如果h[i]==h[i+1]的话,dp[i][j]=dp[i-1][j],因为无论如何填什么正确得个数都不会变。
其他情况 dp[i][j] = dp[i-1][j+1]+dp[i-1][j-1]+(k-2)dp[i-1][j],有一种情况是之前对了,转换后错了;之前错了,转换后对了;其他k-2种答案都保持不变。
hard version我们要反着做,假设我们知道最后转换后和转换前分数一样得方案数为ans的话,那么k^n-ans表示的是转换后得分发生改变的方案数。
又因为转换前分数高和转换后分数高的方案数是一样的,因为对称,所以最后答案一定是 (k^n-ans)/2
那么这个ans怎么做呢,假设现在h[i]!=h[i+1]的个数为num个,因为相同的话没有意义,因为填什么都无所谓
我们枚举+1的位置有多少个,C(num,i);同样的-1也得i个C(num-i,i),其他num-2i个位置有k-2种选择(k-2)(num-2i),剩下n-num个位置都有k个选择k(n-num)。
那么i个+1位置的方案数其实就是C(num,i)C(num-i,i)(k-2)(num-2i)k(n-num),最后用所有的方案数减去他再除以2就完事。
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2005;
const int mod = 998244353;
int h[maxn];
long long dp[maxn][maxn*2],base=2003,k,n;
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%d",&h[i]);
if(k==1){
cout<<"0"<<endl;
return 0;
}
dp[0][base]=1;
for(int i=1;i<=n;i++){
for(int j=base-2000;j<=base+2000;j++){
if(h[i]==h[i%n+1]){
dp[i][j]=dp[i-1][j]*k%mod;
}else{
dp[i][j]=(dp[i-1][j+1]+dp[i-1][j-1]+dp[i-1][j]*(k-2))%mod;
}
}
}
long long ans = 0;
for(int i=1;i<=n;i++){
ans=(ans+dp[n][base+i])%mod;
}
cout<<ans<<endl;
}
#include<bits/stdc++.h>
using namespace std;
const long long mod = 998244353;
const int maxn = 2e5+7;
int n,k,h[maxn];
long long powmod(long long a,long long b){
if(b==0)return 1;
return b%2==0?powmod(a*a%mod,b/2):powmod(a*a%mod,b/2)*a%mod;
}
long long fac[maxn],inv[maxn];
long long C(int a,int b){
if(b<0||b>n)return 0;
return (fac[a]*inv[b]%mod)*inv[a-b]%mod;
}
int main(){
fac[0]=inv[0]=1;
for(int i=1;i<maxn;i++){
fac[i]=i*fac[i-1]%mod;
inv[i]=powmod(i,mod-2)*inv[i-1]%mod;
}
cin>>n>>k;
if(k==1){
cout<<"0"<<endl;
return 0;
}
for(int i=0;i<n;i++)
cin>>h[i];
int num = 0;
h[n]=h[0];
for(int i=0;i<n;i++){
if(h[i]!=h[i+1])num++;
}
long long ans = 0;
for(int i=0;i*2<=num;i++){
long long tmp = C(num,i)*C(num-i,i)%mod*powmod(k-2,num-2*i)%mod*powmod(k,n-num);
ans=(ans+tmp)%mod;
}
cout<<((powmod(k,n)-ans+mod)*inv[2])%mod<<endl;
}
Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学的更多相关文章
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3
A,有多个线段,求一条最短的线段长度,能过覆盖到所又线段,例如(2,4)和(5,6) 那么我们需要4 5连起来,长度为1,例如(2,10)(3,11),用(3,10) 思路:我们想一下如果题目说的是最 ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) E. Arson In Berland Forest 二分 前缀和
E. Arson In Berland Forest The Berland Forest can be represented as an infinite cell plane. Every ce ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) D2. Optimal Subsequences (Hard Version) 数据结构 贪心
D2. Optimal Subsequences (Hard Version) This is the harder version of the problem. In this version, ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C. Messy 构造
C. Messy You are fed up with your messy room, so you decided to clean it up. Your room is a bracket ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B. Box 贪心
B. Box Permutation p is a sequence of integers p=[p1,p2,-,pn], consisting of n distinct (unique) pos ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A. Math Problem 水题
A. Math Problem Your math teacher gave you the following problem: There are n segments on the x-axis ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C Messy
//因为可以反转n次 所以可以得到任何可以构成的序列 #include<iostream> #include<string> #include<vector> us ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B Box
#include<bits/stdc++.h> using namespace std; ]; ]; int main() { int total; cin>>total; w ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A Math Problem
//只要从所有区间右端点的最小值覆盖到所有区间左端点的最大值即可 #include<iostream> using namespace std ; int x,y; int n; int ...
随机推荐
- springBoot-eclipse搭建第一个项目
第一步:安装springtools 第二步:新建项目 在eclipse中创建spirngboot项目可能会出现连接超时的问题,这个时候我们可以在https://start.spring.io/创建项目 ...
- Spring学习的第二天
第二天总共学习了以下内容: spring中的ioc常用注解: 案例使用xml方式和注解方式实现单表的CRUD操作(但还是需要xml配置文件,并不是纯注解的配置): 改造基于注解的Ioc案例,使用纯注解 ...
- tensorflow和pytorch教程
https://github.com/dragen1860/Deep-Learning-with-TensorFlow-book
- Linux中ps -elf和ps aux的区别
一.前言 Linux下输入命令man ps查看: 加横线是 standard syntax -- 比如ps -elf 不加横线是 BSD syntax -- 比如ps aux To see ...
- java之==操作符和equals操作符
==操作符: 基本数据类型比较值: 引用数据类型比较引用(是否指向同一个对象) equals操作符: 引用数据类型比较引用(是否指向同一个对象) 对于String.File.Date.包装类来说,只比 ...
- IT兄弟连 HTML5教程 HTML5表单 多样的输入类型2
4 range range类型用于包含一定范围内数字值的输入域,跟number一样,我们还可以对数值设置限定,range类型显示为滑动条用法如下: 上述代码使用了range类型输入框,为该类型设置了 ...
- Css 设置固定表格头部,内容可滚动
效果图:
- ETCD:TLS
原文地址:TLS etcd支持用于客户端到服务器以及对等方(服务器到服务器/集群)通信的自动TLS以及通过客户端证书的身份验证. 要启动并运行,首先要获得一个成员的CA证书和签名密钥对. 建议为集群中 ...
- ETCD:词汇表
原文地址:词汇表 本文档定义了etcd文档,命令行和源代码中使用的各种术语. Alarm 每当集群需要操作员干预以保持可靠性时,etcd服务器都会发出警报. Authentication 身份验证管理 ...
- 可能是最详细的UMD模块入门指南
学习UMD 介绍 这个仓库记录了一些关于javascript UMD模块规范的demo,对我学习UMD规范有了很大帮助,希望也能帮助到你. 回顾 之前也写了几篇关于javascript模块的博客,链接 ...