F2. Wrong Answer on test 233 (Hard Version)

Your program fails again. This time it gets "Wrong answer on test 233"

.

This is the harder version of the problem. In this version, 1≤n≤2⋅105. You can hack this problem if you locked it. But you can hack the previous problem only if you locked both problems.

The problem is to finish n one-choice-questions. Each of the questions contains k options, and only one of them is correct. The answer to the i-th question is hi, and if your answer of the question i is hi, you earn 1 point, otherwise, you earn 0 points for this question. The values h1,h2,…,hn are known to you in this problem.

However, you have a mistake in your program. It moves the answer clockwise! Consider all the n answers are written in a circle. Due to the mistake in your program, they are shifted by one cyclically.

Formally, the mistake moves the answer for the question i to the question imodn+1. So it moves the answer for the question 1 to question 2, the answer for the question 2 to the question 3, ..., the answer for the question n to the question 1.

We call all the n answers together an answer suit. There are kn possible answer suits in total.

You're wondering, how many answer suits satisfy the following condition: after moving clockwise by 1, the total number of points of the new answer suit is strictly larger than the number of points of the old one. You need to find the answer modulo 998244353.

For example, if n=5, and your answer suit is a=[1,2,3,4,5], it will submitted as a′=[5,1,2,3,4] because of a mistake. If the correct answer suit is h=[5,2,2,3,4], the answer suit a earns 1 point and the answer suite a′ earns 4 points. Since 4>1, the answer suit a=[1,2,3,4,5] should be counted.

Input

The first line contains two integers n, k (1≤n≤2⋅105, 1≤k≤109) — the number of questions and the number of possible answers to each question.

The following line contains n integers h1,h2,…,hn, (1≤hi≤k) — answers to the questions.

Output

Output one integer: the number of answers suits satisfying the given condition, modulo 998244353.

Examples

input

3 3

1 3 1

output

9

input

5 5

1 1 4 2 2

output

1000

input

6 2

1 1 2 2 1 1

output

16

Note

For the first example, valid answer suits are [2,1,1],[2,1,2],[2,1,3],[3,1,1],[3,1,2],[3,1,3],[3,2,1],[3,2,2],[3,2,3].

题意

现在有n道题,每道题有k个答案,但是你现在犯傻了,把第一题的答案交到了第二题,第二题交到了第3题,第k题交到了第(k%n)+1题的位置上去。

现在想知道,有多少种填答案的方案,可以使得交换后的正确数量多于交换前的正确数量。

题解

数据范围小的话,dp[i][j]表示现在考虑到了第i题,交换后比交换前多得j分。

那么如果h[i]==h[i+1]的话,dp[i][j]=dp[i-1][j],因为无论如何填什么正确得个数都不会变。

其他情况 dp[i][j] = dp[i-1][j+1]+dp[i-1][j-1]+(k-2)dp[i-1][j],有一种情况是之前对了,转换后错了;之前错了,转换后对了;其他k-2种答案都保持不变。


hard version我们要反着做,假设我们知道最后转换后和转换前分数一样得方案数为ans的话,那么k^n-ans表示的是转换后得分发生改变的方案数。

又因为转换前分数高和转换后分数高的方案数是一样的,因为对称,所以最后答案一定是 (k^n-ans)/2

那么这个ans怎么做呢,假设现在h[i]!=h[i+1]的个数为num个,因为相同的话没有意义,因为填什么都无所谓

我们枚举+1的位置有多少个,C(num,i);同样的-1也得i个C(num-i,i),其他num-2i个位置有k-2种选择(k-2)(num-2i),剩下n-num个位置都有k个选择k(n-num)。

那么i个+1位置的方案数其实就是C(num,i)C(num-i,i)(k-2)(num-2i)k(n-num),最后用所有的方案数减去他再除以2就完事。

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2005;
const int mod = 998244353;
int h[maxn];
long long dp[maxn][maxn*2],base=2003,k,n;
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%d",&h[i]);
if(k==1){
cout<<"0"<<endl;
return 0;
}
dp[0][base]=1;
for(int i=1;i<=n;i++){
for(int j=base-2000;j<=base+2000;j++){
if(h[i]==h[i%n+1]){
dp[i][j]=dp[i-1][j]*k%mod;
}else{
dp[i][j]=(dp[i-1][j+1]+dp[i-1][j-1]+dp[i-1][j]*(k-2))%mod;
}
}
}
long long ans = 0;
for(int i=1;i<=n;i++){
ans=(ans+dp[n][base+i])%mod;
}
cout<<ans<<endl;
} #include<bits/stdc++.h>
using namespace std; const long long mod = 998244353;
const int maxn = 2e5+7;
int n,k,h[maxn];
long long powmod(long long a,long long b){
if(b==0)return 1;
return b%2==0?powmod(a*a%mod,b/2):powmod(a*a%mod,b/2)*a%mod;
}
long long fac[maxn],inv[maxn];
long long C(int a,int b){
if(b<0||b>n)return 0;
return (fac[a]*inv[b]%mod)*inv[a-b]%mod;
}
int main(){
fac[0]=inv[0]=1;
for(int i=1;i<maxn;i++){
fac[i]=i*fac[i-1]%mod;
inv[i]=powmod(i,mod-2)*inv[i-1]%mod;
}
cin>>n>>k;
if(k==1){
cout<<"0"<<endl;
return 0;
}
for(int i=0;i<n;i++)
cin>>h[i];
int num = 0;
h[n]=h[0];
for(int i=0;i<n;i++){
if(h[i]!=h[i+1])num++;
}
long long ans = 0;
for(int i=0;i*2<=num;i++){
long long tmp = C(num,i)*C(num-i,i)%mod*powmod(k-2,num-2*i)%mod*powmod(k,n-num);
ans=(ans+tmp)%mod;
}
cout<<((powmod(k,n)-ans+mod)*inv[2])%mod<<endl;
}

Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学的更多相关文章

  1. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3

    A,有多个线段,求一条最短的线段长度,能过覆盖到所又线段,例如(2,4)和(5,6) 那么我们需要4 5连起来,长度为1,例如(2,10)(3,11),用(3,10) 思路:我们想一下如果题目说的是最 ...

  2. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) E. Arson In Berland Forest 二分 前缀和

    E. Arson In Berland Forest The Berland Forest can be represented as an infinite cell plane. Every ce ...

  3. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) D2. Optimal Subsequences (Hard Version) 数据结构 贪心

    D2. Optimal Subsequences (Hard Version) This is the harder version of the problem. In this version, ...

  4. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C. Messy 构造

    C. Messy You are fed up with your messy room, so you decided to clean it up. Your room is a bracket ...

  5. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B. Box 贪心

    B. Box Permutation p is a sequence of integers p=[p1,p2,-,pn], consisting of n distinct (unique) pos ...

  6. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A. Math Problem 水题

    A. Math Problem Your math teacher gave you the following problem: There are n segments on the x-axis ...

  7. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C Messy

    //因为可以反转n次 所以可以得到任何可以构成的序列 #include<iostream> #include<string> #include<vector> us ...

  8. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B Box

    #include<bits/stdc++.h> using namespace std; ]; ]; int main() { int total; cin>>total; w ...

  9. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A Math Problem

    //只要从所有区间右端点的最小值覆盖到所有区间左端点的最大值即可 #include<iostream> using namespace std ; int x,y; int n; int ...

随机推荐

  1. 控制台提示“Invalid string length”的原因

    控制台提示“Invalid string length”,浏览器直接卡掉,是为什么呢? 答:因为在写嵌套循环时,定义的变量重名了,内层和外层用了同一个i变量. -THE END-

  2. mongo [initandlisten] exception in initAndListen: 98 Unable to create/open lock file: /data/db/mongod.lock errno:13 Permission denied Is a mongod instance already running?, terminating 2019-09-23T16:

    解决方法: 加权 sudo chmod -Rf 777 /data/db

  3. 入职小白随笔之Android四大组件——广播详解(broadcast)

    Broadcast 广播机制简介 Android中的广播主要可以分为两种类型:标准广播和有序广播. 标准广播:是一种完全异步执行的广播,在广播发出之后,所有的广播接收器几乎都会在同一时刻接收到这条广播 ...

  4. 通过U盘在物理机安装CentOS出现Timeout的问题

    错误信息:centos dracut timeout..... 解决方案: 在进入install页面是,按e,启动编辑.要保证Label与U盘的卷标保持一致即可.

  5. MySQL创建、修改、删除数据库

    创建数据库 CREATE DATABASE [IF NOT EXISTS] t1 CHARACTER SET [=] utf8: 中括号中的代码可有可无:CHARATER如果不写则创建为默认的字符. ...

  6. 【学习笔记】《Java编程思想》 第1~7章

    第一章 对象导论 对整书的概要. 略读. 第二章 一切都是对象 创建一个引用,指向一个对象. 安全的做法:创建一个引用的同时便进行初始化. 对象存储的地方:1)寄存器:这是最快的存储区,因为它位于不同 ...

  7. 如何写一个Python万能装饰器,既可以装饰有参数的方法,也可以装饰无参数方法,或者有无返回值都可以装饰

    Python中的装饰器,可以有参数,可以有返回值,那么如何能让这个装饰器既可以装饰没有参数没有返回值的方法,又可以装饰有返回值或者有参数的方法呢?有一种万能装饰器,代码如下: def decorate ...

  8. sass参考手册

    http://sass.bootcss.com/docs/sass-reference/

  9. python文件的使用

    文件是一个存储在辅助存储器上的数据序列,可以包含任何数据内容.概念上,文件是数据的集合抽象,类似地,函数是程序的集合和抽象.用文件形式组织和表达数据更有效也更为灵活.文件包括两种类型:文本文件和二进制 ...

  10. goroutine,channel

    Go语言中有个概念叫做goroutine, 这类似我们熟知的线程,但是更轻. 以下的程序,我们串行地去执行两次loop函数: package main import "fmt" f ...