F2. Wrong Answer on test 233 (Hard Version)

Your program fails again. This time it gets "Wrong answer on test 233"

.

This is the harder version of the problem. In this version, 1≤n≤2⋅105. You can hack this problem if you locked it. But you can hack the previous problem only if you locked both problems.

The problem is to finish n one-choice-questions. Each of the questions contains k options, and only one of them is correct. The answer to the i-th question is hi, and if your answer of the question i is hi, you earn 1 point, otherwise, you earn 0 points for this question. The values h1,h2,…,hn are known to you in this problem.

However, you have a mistake in your program. It moves the answer clockwise! Consider all the n answers are written in a circle. Due to the mistake in your program, they are shifted by one cyclically.

Formally, the mistake moves the answer for the question i to the question imodn+1. So it moves the answer for the question 1 to question 2, the answer for the question 2 to the question 3, ..., the answer for the question n to the question 1.

We call all the n answers together an answer suit. There are kn possible answer suits in total.

You're wondering, how many answer suits satisfy the following condition: after moving clockwise by 1, the total number of points of the new answer suit is strictly larger than the number of points of the old one. You need to find the answer modulo 998244353.

For example, if n=5, and your answer suit is a=[1,2,3,4,5], it will submitted as a′=[5,1,2,3,4] because of a mistake. If the correct answer suit is h=[5,2,2,3,4], the answer suit a earns 1 point and the answer suite a′ earns 4 points. Since 4>1, the answer suit a=[1,2,3,4,5] should be counted.

Input

The first line contains two integers n, k (1≤n≤2⋅105, 1≤k≤109) — the number of questions and the number of possible answers to each question.

The following line contains n integers h1,h2,…,hn, (1≤hi≤k) — answers to the questions.

Output

Output one integer: the number of answers suits satisfying the given condition, modulo 998244353.

Examples

input

3 3

1 3 1

output

9

input

5 5

1 1 4 2 2

output

1000

input

6 2

1 1 2 2 1 1

output

16

Note

For the first example, valid answer suits are [2,1,1],[2,1,2],[2,1,3],[3,1,1],[3,1,2],[3,1,3],[3,2,1],[3,2,2],[3,2,3].

题意

现在有n道题,每道题有k个答案,但是你现在犯傻了,把第一题的答案交到了第二题,第二题交到了第3题,第k题交到了第(k%n)+1题的位置上去。

现在想知道,有多少种填答案的方案,可以使得交换后的正确数量多于交换前的正确数量。

题解

数据范围小的话,dp[i][j]表示现在考虑到了第i题,交换后比交换前多得j分。

那么如果h[i]==h[i+1]的话,dp[i][j]=dp[i-1][j],因为无论如何填什么正确得个数都不会变。

其他情况 dp[i][j] = dp[i-1][j+1]+dp[i-1][j-1]+(k-2)dp[i-1][j],有一种情况是之前对了,转换后错了;之前错了,转换后对了;其他k-2种答案都保持不变。


hard version我们要反着做,假设我们知道最后转换后和转换前分数一样得方案数为ans的话,那么k^n-ans表示的是转换后得分发生改变的方案数。

又因为转换前分数高和转换后分数高的方案数是一样的,因为对称,所以最后答案一定是 (k^n-ans)/2

那么这个ans怎么做呢,假设现在h[i]!=h[i+1]的个数为num个,因为相同的话没有意义,因为填什么都无所谓

我们枚举+1的位置有多少个,C(num,i);同样的-1也得i个C(num-i,i),其他num-2i个位置有k-2种选择(k-2)(num-2i),剩下n-num个位置都有k个选择k(n-num)。

那么i个+1位置的方案数其实就是C(num,i)C(num-i,i)(k-2)(num-2i)k(n-num),最后用所有的方案数减去他再除以2就完事。

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2005;
const int mod = 998244353;
int h[maxn];
long long dp[maxn][maxn*2],base=2003,k,n;
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%d",&h[i]);
if(k==1){
cout<<"0"<<endl;
return 0;
}
dp[0][base]=1;
for(int i=1;i<=n;i++){
for(int j=base-2000;j<=base+2000;j++){
if(h[i]==h[i%n+1]){
dp[i][j]=dp[i-1][j]*k%mod;
}else{
dp[i][j]=(dp[i-1][j+1]+dp[i-1][j-1]+dp[i-1][j]*(k-2))%mod;
}
}
}
long long ans = 0;
for(int i=1;i<=n;i++){
ans=(ans+dp[n][base+i])%mod;
}
cout<<ans<<endl;
} #include<bits/stdc++.h>
using namespace std; const long long mod = 998244353;
const int maxn = 2e5+7;
int n,k,h[maxn];
long long powmod(long long a,long long b){
if(b==0)return 1;
return b%2==0?powmod(a*a%mod,b/2):powmod(a*a%mod,b/2)*a%mod;
}
long long fac[maxn],inv[maxn];
long long C(int a,int b){
if(b<0||b>n)return 0;
return (fac[a]*inv[b]%mod)*inv[a-b]%mod;
}
int main(){
fac[0]=inv[0]=1;
for(int i=1;i<maxn;i++){
fac[i]=i*fac[i-1]%mod;
inv[i]=powmod(i,mod-2)*inv[i-1]%mod;
}
cin>>n>>k;
if(k==1){
cout<<"0"<<endl;
return 0;
}
for(int i=0;i<n;i++)
cin>>h[i];
int num = 0;
h[n]=h[0];
for(int i=0;i<n;i++){
if(h[i]!=h[i+1])num++;
}
long long ans = 0;
for(int i=0;i*2<=num;i++){
long long tmp = C(num,i)*C(num-i,i)%mod*powmod(k-2,num-2*i)%mod*powmod(k,n-num);
ans=(ans+tmp)%mod;
}
cout<<((powmod(k,n)-ans+mod)*inv[2])%mod<<endl;
}

Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学的更多相关文章

  1. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3

    A,有多个线段,求一条最短的线段长度,能过覆盖到所又线段,例如(2,4)和(5,6) 那么我们需要4 5连起来,长度为1,例如(2,10)(3,11),用(3,10) 思路:我们想一下如果题目说的是最 ...

  2. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) E. Arson In Berland Forest 二分 前缀和

    E. Arson In Berland Forest The Berland Forest can be represented as an infinite cell plane. Every ce ...

  3. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) D2. Optimal Subsequences (Hard Version) 数据结构 贪心

    D2. Optimal Subsequences (Hard Version) This is the harder version of the problem. In this version, ...

  4. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C. Messy 构造

    C. Messy You are fed up with your messy room, so you decided to clean it up. Your room is a bracket ...

  5. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B. Box 贪心

    B. Box Permutation p is a sequence of integers p=[p1,p2,-,pn], consisting of n distinct (unique) pos ...

  6. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A. Math Problem 水题

    A. Math Problem Your math teacher gave you the following problem: There are n segments on the x-axis ...

  7. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C Messy

    //因为可以反转n次 所以可以得到任何可以构成的序列 #include<iostream> #include<string> #include<vector> us ...

  8. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B Box

    #include<bits/stdc++.h> using namespace std; ]; ]; int main() { int total; cin>>total; w ...

  9. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A Math Problem

    //只要从所有区间右端点的最小值覆盖到所有区间左端点的最大值即可 #include<iostream> using namespace std ; int x,y; int n; int ...

随机推荐

  1. dedecmsV5.7 任意文件上传漏洞修复

    问题文件:在/include/dialog/select_soft_post.php文件 解决方法: 先找到这个文件/include/dialog/select_soft_post.php,找到大概7 ...

  2. 4、netty第三个例子,建立一个tcp的聊天的程序

    代码基于第二个例子,支持多客户端的连接,在线聊天. 主要思路: 连接建立时,在服务器端,保存channel 对象,当有新的客户端加入时,遍历保存的channel集合,向其他客户端发送加入消息. 当一个 ...

  3. 【Java基础】String 相关知识点总结

    String 相关知识点总结 字符串的不可变性 概述 String 被声明为 final,因此它不可继承 在 Java8 中,String 内部使用 char 数组存储数据 public final ...

  4. make:yacc/lex:command not be found

    1.使用./build编译boa-0.94.13时出现make:yacc:command not be found 解决方法:apt-get install -y byacc 2.出现make:lex ...

  5. 三feng云,免费虚拟主机和免费云服务器

    三feng云,免费虚拟主机和免费云服务器 链接:https://www.sanfengyun.com 虚拟主机 虚拟服务器 BGP多线路 独立IP地址 送免备案系统,永久免费 具备高在线率.高安全性. ...

  6. asp开发类型判段

    Asp的东西有许多,asp的类型便是其中之一,如同Asp的数据类型只需一个那便是"variant ". 它是一种特别的数据类型可以依据它的运用标明许多不同品种的信息(cnhfjj) ...

  7. 3万字长文概述:通俗易懂告诉你什么是.NET?什么是.NET Framework?什么是.NET Core?

    [转载]通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core? 什么是.NET?什么是.NET Framework?本文将从上往下,循序渐进的介绍一系列相关.NET的 ...

  8. numpy-np.ceil,np.floor,np.expand_dims方法

    np.ceil(多维数组):对多维数组的各个数向上取整 np.floor(多维数组):对多维数组的各个数向下取整 np.expand_dims(x,axis = 0):在x的第一维度上插入一个维度,a ...

  9. @Import与@ImportResource注解的解读

    前言 在使用Spring-Cloud微服务框架的时候,对于@Import和@ImportResource这两个注解想必大家并不陌生.我们会经常用@Import来导入配置类或者导入一个带有@Compon ...

  10. Django入门必知必会操作

    一.Django基础必备三件套 HttpRseponse 内部传入一个字符串参数,返回给浏览器. 在app目录下的views.py添加函数,添加函数之前必须在urls.py添加函数对应关系,否则访问不 ...