F2. Wrong Answer on test 233 (Hard Version)

Your program fails again. This time it gets "Wrong answer on test 233"

.

This is the harder version of the problem. In this version, 1≤n≤2⋅105. You can hack this problem if you locked it. But you can hack the previous problem only if you locked both problems.

The problem is to finish n one-choice-questions. Each of the questions contains k options, and only one of them is correct. The answer to the i-th question is hi, and if your answer of the question i is hi, you earn 1 point, otherwise, you earn 0 points for this question. The values h1,h2,…,hn are known to you in this problem.

However, you have a mistake in your program. It moves the answer clockwise! Consider all the n answers are written in a circle. Due to the mistake in your program, they are shifted by one cyclically.

Formally, the mistake moves the answer for the question i to the question imodn+1. So it moves the answer for the question 1 to question 2, the answer for the question 2 to the question 3, ..., the answer for the question n to the question 1.

We call all the n answers together an answer suit. There are kn possible answer suits in total.

You're wondering, how many answer suits satisfy the following condition: after moving clockwise by 1, the total number of points of the new answer suit is strictly larger than the number of points of the old one. You need to find the answer modulo 998244353.

For example, if n=5, and your answer suit is a=[1,2,3,4,5], it will submitted as a′=[5,1,2,3,4] because of a mistake. If the correct answer suit is h=[5,2,2,3,4], the answer suit a earns 1 point and the answer suite a′ earns 4 points. Since 4>1, the answer suit a=[1,2,3,4,5] should be counted.

Input

The first line contains two integers n, k (1≤n≤2⋅105, 1≤k≤109) — the number of questions and the number of possible answers to each question.

The following line contains n integers h1,h2,…,hn, (1≤hi≤k) — answers to the questions.

Output

Output one integer: the number of answers suits satisfying the given condition, modulo 998244353.

Examples

input

3 3

1 3 1

output

9

input

5 5

1 1 4 2 2

output

1000

input

6 2

1 1 2 2 1 1

output

16

Note

For the first example, valid answer suits are [2,1,1],[2,1,2],[2,1,3],[3,1,1],[3,1,2],[3,1,3],[3,2,1],[3,2,2],[3,2,3].

题意

现在有n道题,每道题有k个答案,但是你现在犯傻了,把第一题的答案交到了第二题,第二题交到了第3题,第k题交到了第(k%n)+1题的位置上去。

现在想知道,有多少种填答案的方案,可以使得交换后的正确数量多于交换前的正确数量。

题解

数据范围小的话,dp[i][j]表示现在考虑到了第i题,交换后比交换前多得j分。

那么如果h[i]==h[i+1]的话,dp[i][j]=dp[i-1][j],因为无论如何填什么正确得个数都不会变。

其他情况 dp[i][j] = dp[i-1][j+1]+dp[i-1][j-1]+(k-2)dp[i-1][j],有一种情况是之前对了,转换后错了;之前错了,转换后对了;其他k-2种答案都保持不变。


hard version我们要反着做,假设我们知道最后转换后和转换前分数一样得方案数为ans的话,那么k^n-ans表示的是转换后得分发生改变的方案数。

又因为转换前分数高和转换后分数高的方案数是一样的,因为对称,所以最后答案一定是 (k^n-ans)/2

那么这个ans怎么做呢,假设现在h[i]!=h[i+1]的个数为num个,因为相同的话没有意义,因为填什么都无所谓

我们枚举+1的位置有多少个,C(num,i);同样的-1也得i个C(num-i,i),其他num-2i个位置有k-2种选择(k-2)(num-2i),剩下n-num个位置都有k个选择k(n-num)。

那么i个+1位置的方案数其实就是C(num,i)C(num-i,i)(k-2)(num-2i)k(n-num),最后用所有的方案数减去他再除以2就完事。

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2005;
const int mod = 998244353;
int h[maxn];
long long dp[maxn][maxn*2],base=2003,k,n;
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%d",&h[i]);
if(k==1){
cout<<"0"<<endl;
return 0;
}
dp[0][base]=1;
for(int i=1;i<=n;i++){
for(int j=base-2000;j<=base+2000;j++){
if(h[i]==h[i%n+1]){
dp[i][j]=dp[i-1][j]*k%mod;
}else{
dp[i][j]=(dp[i-1][j+1]+dp[i-1][j-1]+dp[i-1][j]*(k-2))%mod;
}
}
}
long long ans = 0;
for(int i=1;i<=n;i++){
ans=(ans+dp[n][base+i])%mod;
}
cout<<ans<<endl;
} #include<bits/stdc++.h>
using namespace std; const long long mod = 998244353;
const int maxn = 2e5+7;
int n,k,h[maxn];
long long powmod(long long a,long long b){
if(b==0)return 1;
return b%2==0?powmod(a*a%mod,b/2):powmod(a*a%mod,b/2)*a%mod;
}
long long fac[maxn],inv[maxn];
long long C(int a,int b){
if(b<0||b>n)return 0;
return (fac[a]*inv[b]%mod)*inv[a-b]%mod;
}
int main(){
fac[0]=inv[0]=1;
for(int i=1;i<maxn;i++){
fac[i]=i*fac[i-1]%mod;
inv[i]=powmod(i,mod-2)*inv[i-1]%mod;
}
cin>>n>>k;
if(k==1){
cout<<"0"<<endl;
return 0;
}
for(int i=0;i<n;i++)
cin>>h[i];
int num = 0;
h[n]=h[0];
for(int i=0;i<n;i++){
if(h[i]!=h[i+1])num++;
}
long long ans = 0;
for(int i=0;i*2<=num;i++){
long long tmp = C(num,i)*C(num-i,i)%mod*powmod(k-2,num-2*i)%mod*powmod(k,n-num);
ans=(ans+tmp)%mod;
}
cout<<((powmod(k,n)-ans+mod)*inv[2])%mod<<endl;
}

Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学的更多相关文章

  1. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3

    A,有多个线段,求一条最短的线段长度,能过覆盖到所又线段,例如(2,4)和(5,6) 那么我们需要4 5连起来,长度为1,例如(2,10)(3,11),用(3,10) 思路:我们想一下如果题目说的是最 ...

  2. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) E. Arson In Berland Forest 二分 前缀和

    E. Arson In Berland Forest The Berland Forest can be represented as an infinite cell plane. Every ce ...

  3. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) D2. Optimal Subsequences (Hard Version) 数据结构 贪心

    D2. Optimal Subsequences (Hard Version) This is the harder version of the problem. In this version, ...

  4. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C. Messy 构造

    C. Messy You are fed up with your messy room, so you decided to clean it up. Your room is a bracket ...

  5. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B. Box 贪心

    B. Box Permutation p is a sequence of integers p=[p1,p2,-,pn], consisting of n distinct (unique) pos ...

  6. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A. Math Problem 水题

    A. Math Problem Your math teacher gave you the following problem: There are n segments on the x-axis ...

  7. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C Messy

    //因为可以反转n次 所以可以得到任何可以构成的序列 #include<iostream> #include<string> #include<vector> us ...

  8. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B Box

    #include<bits/stdc++.h> using namespace std; ]; ]; int main() { int total; cin>>total; w ...

  9. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A Math Problem

    //只要从所有区间右端点的最小值覆盖到所有区间左端点的最大值即可 #include<iostream> using namespace std ; int x,y; int n; int ...

随机推荐

  1. Electron npm install 常见错误(Linux)

    Linux版本 Ubuntu 12.04 (32bit) 安装Git sudo apt-get install git 生成ssh key #查看有没有sshkey cd ~/.ssh #生成 ssh ...

  2. Maven简介与使用

    Maven介绍 Maven是项目管理工具,对软件项目提供构建与依赖管理 Mavan是Apache下的Java开源项目 Mavan为Java项目提供了统一的管理方式,已成为业界标准 Maven核心特性 ...

  3. SAP之RFC_READ_TABLE

    RFC_READ_TABLE 是SAP系统自带的RFC函数,用于读取SAP数据库表的结构和数据.使用方法如下: IMPORTINGQUERY_TABLE:读取的表名DELIMITER:输出字段(DAT ...

  4. 表单生成器(Form Builder)之mongodb表单数据查询——统计查询求和

    上一篇笔记仅是记录了一下简单的关联查询,根据笔记中的场景:将某一车辆关联的耗损记录全部放在了一个字段当中.不知道现在中有没有这种场景,我们的应用中没有类似的场景,可能我们更关注的是某车辆的总耗损金额和 ...

  5. 基于 Unity 的一种透明通道压缩处理

    由于 Android 平台各种硬件标准的不统一,为了开发的软件项目能够在大部分 Android 机上完美运行,我们需要以较差的硬件支持为基础做准备. Android 平台基本上都支持对不带 Alpha ...

  6. 关于ajax请求不到后台页面提示400 bad request的问题

    解决方法一: 在contrller控制器中对应方法的 @RequestMapping注解中添加 method="RequestMethod.POST"属性

  7. swoole视频直播

    $serv=new swoole_websocket_server("0.0.0.0",9501);$client=array();$serv->on("open& ...

  8. docker打包python应用

    操作系统 : CentOS7.5.1804_x64 docker版本 : 18.06.3-ce 本文描述了怎么将简单的python应用打包成docker镜像的过程. 本文涉及文件目录结构如下: [ro ...

  9. Linux下离线安装python项目的依赖包

    第一步新建一个site-packages文件夹,把python项目有需要的依赖包名称导出到site-packages下的requirements.txt中 $ pip3 freeze > req ...

  10. Linux习题小结

    1.输出当前下的目录.ls -l 长格式输出. (1)使用grep 因为第一个 ls -l 的第一个标识代表的是文件类型,所以使用 grep 过滤以 d 开头的行,输出的就只是目录了. 正则表达式 g ...