hadoop2.6集群环境搭建
版权声明:本文为博主原创文章,未经博主允许不得转载。
一、环境说明
1、机器:一台物理机 和一台虚拟机
2、Linux版本:[Spark@S1PA11 ~]$ cat /etc/issue
Red Hat Enterprise Linux Server release 5.4 (Tikanga)
3、JDK: [spark@S1PA11 ~]$ Java -version
Javaversion "1.6.0_27"
Java(TM) SE Runtime Environment (build 1.6.0_27-b07)
Java HotSpot(TM) 64-Bit Server VM (build 20.2-b06, mixed mode)
4、集群节点:两个 S1PA11(Master),S1PA222(Slave)
二、准备工作
1、安装Java jdk前一篇文章撰写了:http://blog.csdn.net/stark_summer/article/details/42391531
2、ssh免密码验证 :http://blog.csdn.net/stark_summer/article/details/42393053
3、下载Hadoop版本:http://mirror.bit.edu.cn/apache/hadoop/common/
三、安装Hadoop
这是下载后的hadoop-2.6.0.tar.gz压缩包,
1、解压 tar -xzvf hadoop-2.6.0.tar.gz
2、move到指定目录下:[spark@S1PA11 software]$ mv hadoop-2.6.0 ~/opt/
3、进入hadoop目前 [spark@S1PA11 opt]$ cd hadoop-2.6.0/
[spark@S1PA11 hadoop-2.6.0]$ ls
bin dfs etc include input lib libexec LICENSE.txt logs NOTICE.txt README.txt sbin share tmp
配置之前,先在本地文件系统创建以下文件夹:~/hadoop/tmp、~/dfs/data、~/dfs/name。 主要涉及的配置文件有7个:都在/hadoop/etc/hadoop文件夹下,可以用gedit命令对其进行编辑。
~/hadoop/etc/hadoop/hadoop-env.sh
~/hadoop/etc/hadoop/yarn-env.sh
~/hadoop/etc/hadoop/slaves
~/hadoop/etc/hadoop/core-site.xml
~/hadoop/etc/hadoop/hdfs-site.xml
~/hadoop/etc/hadoop/mapred-site.xml
~/hadoop/etc/hadoop/yarn-site.xml
4、进去hadoop配置文件目录
[spark@S1PA11 hadoop-2.6.0]$ cd etc/hadoop/
[spark@S1PA11 hadoop]$ ls
capacity-scheduler.xml hadoop-env.sh httpfs-env.sh kms-env.sh mapred-env.sh ssl-client.xml.example
configuration.xsl hadoop-metrics2.properties httpfs-log4j.properties kms-log4j.properties mapred-queues.xml.template ssl-server.xml.example
Container-executor.cfg hadoop-metrics.properties httpfs-signature.secret kms-site.xml mapred-site.xml yarn-env.cmd
core-site.xml hadoop-policy.xml httpfs-site.xml log4j.properties mapred-site.xml.template yarn-env.sh
hadoop-env.cmd hdfs-site.xml kms-acls.xml mapred-env.cmd slaves yarn-site.xml
4.1、配置 hadoop-env.sh文件-->修改JAVA_HOME
# The java implementation to use.
export JAVA_HOME=/home/spark/opt/java/jdk1.6.0_37
4.2、配置 yarn-env.sh 文件-->>修改JAVA_HOME
# some Java parameters
export JAVA_HOME=/home/spark/opt/java/jdk1.6.0_37
4.3、配置slaves文件-->>增加slave节点
S1PA222
4.4、配置 core-site.xml文件-->>增加hadoop核心配置(hdfs文件端口是9000、file:/home/spark/opt/hadoop-2.6.0/tmp、)
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://S1PA11:9000</value>
</property>
<property>
<name>io.file.buffer.size</name>
<value>131072</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>file:/home/spark/opt/hadoop-2.6.0/tmp</value>
<description>Abasefor other temporary directories.</description>
</property>
<property>
<name>hadoop.proxyuser.spark.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.spark.groups</name>
<value>*</value>
</property>
</configuration>
4.5、配置 hdfs-site.xml 文件-->>增加hdfs配置信息(namenode、datanode端口和目录位置)
<configuration>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>S1PA11:9001</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:/home/spark/opt/hadoop-2.6.0/dfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:/home/spark/opt/hadoop-2.6.0/dfs/data</value>
</property>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
</configuration>
4.6、配置 mapred-site.xml 文件-->>增加mapreduce配置(使用yarn框架、jobhistory使用地址以及web地址)
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>S1PA11:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>S1PA11:19888</value>
</property>
</configuration>
4.7、配置 yarn-site.xml 文件-->>增加yarn功能
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>S1PA11:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>S1PA11:8030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>S1PA11:8035</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>S1PA11:8033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>S1PA11:8088</value>
</property>
</configuration>
5、将配置好的hadoop文件copy到另一台slave机器上
[spark@S1PA11 opt]$ scp -r hadoop-2.6.0/ spark@10.126.34.43:~/opt/
四、验证
1、格式化namenode:
[spark@S1PA11 opt]$ cd hadoop-2.6.0/
[spark@S1PA11 hadoop-2.6.0]$ ls
bin dfs etc include input lib libexec LICENSE.txt logs NOTICE.txt README.txt sbin share tmp
[spark@S1PA11 hadoop-2.6.0]$ ./bin/hdfs namenode -format
[spark@S1PA222 .ssh]$ cd ~/opt/hadoop-2.6.0
[spark@S1PA222 hadoop-2.6.0]$ ./bin/hdfs namenode -format
2、启动hdfs:
[spark@S1PA11 hadoop-2.6.0]$ ./sbin/start-dfs.sh
15/01/05 16:41:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Starting namenodes on [S1PA11]
S1PA11: starting namenode, logging to /home/spark/opt/hadoop-2.6.0/logs/hadoop-spark-namenode-S1PA11.out
S1PA222: starting datanode, logging to /home/spark/opt/hadoop-2.6.0/logs/hadoop-spark-datanode-S1PA222.out
Starting secondary namenodes [S1PA11]
S1PA11: starting secondarynamenode, logging to /home/spark/opt/hadoop-2.6.0/logs/hadoop-spark-secondarynamenode-S1PA11.out
15/01/05 16:41:21 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[spark@S1PA11 hadoop-2.6.0]$ jps
22230 Master
30889 Jps
22478 Worker
30498 NameNode
30733 SecondaryNameNode
19781 ResourceManager
3、停止hdfs:
[spark@S1PA11 hadoop-2.6.0]$./sbin/stop-dfs.sh
15/01/05 16:40:28 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Stopping namenodes on [S1PA11]
S1PA11: stopping namenode
S1PA222: stopping datanode
Stopping secondary namenodes [S1PA11]
S1PA11: stopping secondarynamenode
15/01/05 16:40:48 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[spark@S1PA11 hadoop-2.6.0]$ jps
30336 Jps
22230 Master
22478 Worker
19781 ResourceManager
4、启动yarn:
[spark@S1PA11 hadoop-2.6.0]$./sbin/start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /home/spark/opt/hadoop-2.6.0/logs/yarn-spark-resourcemanager-S1PA11.out
S1PA222: starting nodemanager, logging to /home/spark/opt/hadoop-2.6.0/logs/yarn-spark-nodemanager-S1PA222.out
[spark@S1PA11 hadoop-2.6.0]$ jps
31233 ResourceManager
22230 Master
22478 Worker
30498 NameNode
30733 SecondaryNameNode
31503 Jps
5、停止yarn:
[spark@S1PA11 hadoop-2.6.0]$ ./sbin/stop-yarn.sh
stopping yarn daemons
stopping resourcemanager
S1PA222: stopping nodemanager
no proxyserver to stop
[spark@S1PA11 hadoop-2.6.0]$ jps
31167 Jps
22230 Master
22478 Worker
30498 NameNode
30733 SecondaryNameNode
6、查看集群状态:
[spark@S1PA11 hadoop-2.6.0]$ ./bin/hdfs dfsadmin -report
15/01/05 16:44:50 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Configured Capacity: 52101857280 (48.52 GB)
Present Capacity: 45749510144 (42.61 GB)
DFS Remaining: 45748686848 (42.61 GB)
DFS Used: 823296 (804 KB)
DFS Used%: 0.00%
Under replicated blocks: 10
Blocks with corrupt replicas: 0
Missing blocks: 0
-------------------------------------------------
Live datanodes (1):
Name: 10.126.45.56:50010 (S1PA222)
Hostname: S1PA209
Decommission Status : Normal
Configured Capacity: 52101857280 (48.52 GB)
DFS Used: 823296 (804 KB)
Non DFS Used: 6352347136 (5.92 GB)
DFS Remaining: 45748686848 (42.61 GB)
DFS Used%: 0.00%
DFS Remaining%: 87.81%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Mon Jan 05 16:44:50 CST 2015
7、查看hdfs:http://10.58.44.47:50070/
hadoop2.6集群环境搭建的更多相关文章
- 虚拟机centos6.5 --hadoop2.6集群环境搭建
一.环境说明 虚拟机:virtualBox 系统:centos6.5,64位 集群:3个节点 master 192.168.12.232 slave01 192.168.12.233 slave02 ...
- 原创hadoop2.6集群环境搭建
三台机器: Hmaster 172.168.2.3.Hslave1 172.168.2.4.Hslave2 172.168.2.6 JDK:1.8.49 OS:red hat 5.4 64 (由于后期 ...
- hadoop2集群环境搭建
在查询了很多资料以后,发现国内外没有一篇关于hadoop2集群环境搭建的详细步骤的文章. 所以,我想把我知道的分享给大家,方便大家交流. 以下是本文的大纲: 1. 在windows7 下面安装虚拟机2 ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十)安装hadoop2.9.0搭建HA
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二)安装hadoop2.9.0
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- Hadoop+Spark:集群环境搭建
环境准备: 在虚拟机下,大家三台Linux ubuntu 14.04 server x64 系统(下载地址:http://releases.ubuntu.com/14.04.2/ubuntu-14.0 ...
- Spark 1.6.1分布式集群环境搭建
一.软件准备 scala-2.11.8.tgz spark-1.6.1-bin-hadoop2.6.tgz 二.Scala 安装 1.master 机器 (1)下载 scala-2.11.8.tgz, ...
- hadoop集群环境搭建之安装配置hadoop集群
在安装hadoop集群之前,需要先进行zookeeper的安装,请参照hadoop集群环境搭建之zookeeper集群的安装部署 1 将hadoop安装包解压到 /itcast/ (如果没有这个目录 ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十三)kafka+spark streaming打包好的程序提交时提示虚拟内存不足(Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 G)
异常问题:Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical mem ...
随机推荐
- Docker5-docker私库的搭建及常用方法-harbor-registry方式
一.简介 1.官方已经提供registry镜像为什么还需要用harbor 1)registry缺少镜像清理机制,可以push但是不能删除,耗费空间 2)registry缺乏相应的扩展机制 3)harb ...
- .net core session的使用步骤
步骤 操作 备注 1 Microsoft.AspNetCore.Session Microsoft.AspNetCore.Http.Extensions nuget安装包 2 ConfigureS ...
- Android通过外部浏览器调用微信H5支付,Android+PHP详解
看了好多关于讲解微信H5支付开发的文章,大多数都是通过微信内部浏览器来调用支付接口(其实就是公众号支付),可能是因为H5支付接口刚开放不久吧. 微信官方体验链接:http://wxpay.wxutil ...
- java中String转Date与Date转String
public static void main(String[] args) throws ParseException { SimpleDateFormat simpleDateFormat = n ...
- React 项目引入 Dva
背景 现在手上在做的 React 项目因为年代久远,用的 Redux,写代码的体验不太好,所以想升级一下引入 dva.以往使用 dva 都是使用 dva-cli 直接生成 dva 项目,或者在使用 a ...
- redis系列之------字典
前言 字典, 又称符号表(symbol table).关联数组(associative array)或者映射(map), 是一种用于保存键值对(key-value pair)的抽象数据结构. 在字典中 ...
- flask 源码解析:上下文(一)
文章出处 https://www.cnblogs.com/jackchengcc/archive/2018/11/29/10025949.html 一:什么是上下文 每一段程序都有很多外部变量.只有 ...
- .net cookie跨域请求指定请求域名
HttpCookie cookie = new HttpCookie("OrderApiCookie"); //初使化并设置Cookie的名称 cookie.HttpOnly = ...
- 0基础学Java快速扫盲指南,月入2W的基础
学Java,掌握一些基本的概念是第一步,本文简单为大家介绍一些扫盲级别的内容,希望帮助小白快速入门. 一.基本概念 JVM:java虚拟机,负责将编译产生的字节码转换为特定机器代码,实现一次编译多处执 ...
- 终端 10X 工作法(一)
目录 1. Terminal 2. Grep 3. Sed 4. Awk 5. Xargs 6. Find 在 github 上面有一个 700 多人 star 的 repo 叫做 Bash-Onel ...