【CF528E】Triangles 3000(计算几何)

题面

CF

平面上有若干条直线,保证不平行,不会三线共点。

求任选三条直线出来围出的三角形的面积的期望。

题解

如果一定考虑直接计算这个三角形的面积,我们很难不去弄出这三个交点。

我们需要的是低于\(O(n^3)\)的复杂度,而\(O(n^3)\)的做法可以直接暴力枚举三条直线。

考虑向量计算面积的方法,对于一个在三角形\(\Delta ABC\)之外的点\(O\),我们可以有:

\[S\Delta ABC=\frac{1}{2}(OA\times OB+OB\times OC+OC\times OA)
\]

这个证明不难,画图把每一部分的面积表示出来就很简单了。

接下来枚举一条直线,剩下点按照极角顺序依次加入,然后这个贡献可以拆成三个部分,而我们只算都在枚举的直线上的交点的贡献,在其他直线上的可以在其他时候算。

于是要求的就是这条直线和枚举的直线的交点与前面所有直线与枚举的直线的交点与\(O\)构成的向量的叉积。

叉积是:\((x1,y1)\times (x2,y2)=x1*y2-x2*y1\),

于是得到:\((x1,y1)\times (x2,y2)+(x1,y1)\times (x3,y3)=x1*(y2+y3)-y1*(x2+x3)\)

这个东西显然等于\((x1,y1)\times ((x2,y2)+(x3,y3))\),那么就可以很开心的前缀和了。

注意为了保证顺序正确,需要把所有的直线按照极角提前排序。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 3030
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n;double ans;
struct Vect{double x,y;}O,g[MAX];
struct Line{double a,b,c,ang;}L[MAX];
bool operator<(Line a,Line b){return a.ang<b.ang;}
Vect Intersection(Line a,Line b)
{
if(fabs(a.a)>1e-9)
{
double y=(b.c*a.a-a.c*b.a)/(a.b*b.a-a.a*b.b);
double x=-(a.c+a.b*y)/a.a;
return (Vect){x,y};
}
else
{
double x=(b.c*a.b-a.c*b.b)/(a.a*b.b-a.b*b.a);
double y=-(a.c+a.a*x)/a.b;
return (Vect){x,y};
}
}
double Cross(Vect a,Vect b){return a.x*b.y-a.y*b.x;}
Vect operator-(Vect a,Vect b){return (Vect){a.x-b.x,a.y-b.y};}
Vect operator+(Vect a,Vect b){return (Vect){a.x+b.x,a.y+b.y};}
bool cmp(Vect a,Vect b){return Cross(a,b)>=0;}
int main()
{
n=read();O=(Vect){1e7,1e7};
for(int i=1;i<=n;++i)
{
L[i].a=read(),L[i].b=read(),L[i].c=-read();
double x,y;
if(fabs(L[i].b)>1e-7)x=1,y=-L[i].a/L[i].b;
else y=1,x=-L[i].b/L[i].a;
L[i].ang=atan2(y,x);
}
sort(&L[1],&L[n+1]);
/*
for(int i=1;i<=n;++i)
for(int j=i+1;j<=n;++j)
for(int k=j+1;k<=n;++k)
{
Vect g[3];
g[0]=Intersection(L[i],L[j]);
g[1]=Intersection(L[j],L[k]);
g[2]=Intersection(L[k],L[i]);
ans-=(Cross(g[0],g[1])+Cross(g[1],g[2])+Cross(g[2],g[0]));
}
ans/=1.0*n*(n-1)*(n-2)/3;
printf("%.10lf\n",ans);ans=0;
*/
for(int i=1;i<=n;++i)
{
Vect s=(Vect){0,0};
for(int j=i%n+1;j!=i;j=j%n+1)
{
Vect a=Intersection(L[i],L[j]);
ans+=Cross(s,a);s=s+a;
}
}
ans/=1.0*n*(n-1)*(n-2)/3;
printf("%.10lf\n",ans);
return 0;
}

【CF528E】Triangles 3000(计算几何)的更多相关文章

  1. CF528E Triangles 3000

    cf luogu 既然要求三角形面积,不如考虑三角形的面积公式.因为是三条直线,所以可以考虑利用三个交点来算面积,如果这个三角形按照逆时针方向有\(ABC\)三点,那么他的面积为\(\frac{\ve ...

  2. Codeforces 528E Triangles 3000 - 计算几何

    题目传送门 传送点I 传送点II 传送点III 题目大意 给定$n$的平面上的直线,保证没有三条直线共点,两条直线平行.问随机选出3条直线交成的三角形面积的期望. 显然$S=\frac{1}{2}ah ...

  3. CodeForces 682E Alyona and Triangles (计算几何)

    Alyona and Triangles 题目连接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/J Description You ar ...

  4. ACM学习历程——UVA10112 Myacm Triangles(计算几何,多边形与点的包含关系)

    Description   Problem B: Myacm Triangles Problem B: Myacm Triangles Source file: triangle.{c, cpp, j ...

  5. Codeforces Round #296 (Div. 1) E. Triangles 3000

    http://codeforces.com/contest/528/problem/E 先来吐槽一下,一直没机会进div 1, 马力不如当年, 这场题目都不是非常难,div 2 四道题都是水题! 题目 ...

  6. POI 2018.10.21

    [POI2008]TRO-Triangles https://www.cnblogs.com/GXZlegend/p/7509699.html 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积 ...

  7. hdu 5784 How Many Triangles 计算几何,平面有多少个锐角三角形

    How Many Triangles 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5784 Description Alice has n poin ...

  8. hdu-5784 How Many Triangles(计算几何+极角排序)

    题目链接: How Many Triangles Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  9. 【计算几何】【极角排序】【二分】Petrozavodsk Summer Training Camp 2016 Day 6: Warsaw U Contest, XVI Open Cup Onsite, Sunday, August 28, 2016 Problem J. Triangles

    平面上给你n(不超过2000)个点,问你能构成多少个面积在[A,B]之间的Rt三角形. 枚举每个点作为直角顶点,对其他点极角排序,同方向的按长度排序,然后依次枚举每个向量,与其对应的另一条直角边是单调 ...

随机推荐

  1. Fiddler使用方法之Fiddler显示IP,Fiddler中文乱码解决方法以及Fiddler模拟发送get/post请求

    Fiddler是一个HTTP的调试代理,以代理服务器的方式,监听系统的Http网络数据流动,是我们常用的抓包工具之一 今天为大家分享一下几个使用Fiddler的小技巧 一.Fiddler抓包中文乱码问 ...

  2. [Vue 牛刀小试]:第十三章 - Vue Router 基础使用再探(命名路由、命名视图、路由传参)

    一.前言 在上一章的学习中,我们简单介绍了前端路由的概念,以及如何在 Vue 中通过使用 Vue Router 来实现我们的前端路由.但是在实际使用中,我们经常会遇到路由传参.或者一个页面是由多个组件 ...

  3. mysql 数据误删恢复

    当binlog_format设置为ROW时,想查看binlog中的sql语句时,需要解密,添加这个 --base64-output=decode-rows -v

  4. Spring Boot AOP解析

    Spring Boot AOP 面向切面编程(AOP)通过提供另一种思考程序结构的方式来补充面向对象编程(OOP). OOP中模块化的关键单元是类,而在AOP中,模块化单元是方面. AOP(Aspec ...

  5. 什么是StatefulSet

    简单说来,StatefulSet其实就是一种升级版的Deployment,大体工作原理如下 1.为每个Pod名字按顺序编号,按顺序启动 # kubectl get po -o wide -l app= ...

  6. 将python项目打包为可运行的windows桌面exe程序

    ---恢复内容开始--- 步骤大概如下: 1.需要一个python文件/项目.也就是我们想要打包的文件 2.安装pyinstaller,目的是将我们的python文件生成为exe可执行程序. 3.使用 ...

  7. 关于angularjs异步操作后台请求时,用$q.all排列先后顺序的问题

    最近我在做angularjs程序时遇到了一个问题 1.页面有很多选择框,一个选择框里面有众多的选择项,和一个默认选定的项,像下面这样(很多选择框,不只一个): 2.众多的选项要从后台接口得到,默认项从 ...

  8. vue-cli引用vant使用rem自适应

    摘要 由于需要用到弹出层但是懒得造轮子所以使用vant 介绍 使用的node包管理器为yarn vue-cli版本4 rem计算方式为index.html的js脚本计算 安装vant yarn add ...

  9. 查询物料单位PAC成本

    select cpp.period_name 期间名称, ccga.organization_id 组织ID, ood.ORGANIZATION_CODE 组织代码, OOD.ORGANIZATION ...

  10. Django 注意知识点(一)

    本篇概述 Django Admin后台显示 多对多字段(如何) Django 模板 显示 多对多字段(如何) Django 将表单中上传的多对多字段存入数据库 (如何)   Django 上传文件 ( ...