代码:https://github.com/Yochengliu/Relation-Shape-CNN

文章:https://arxiv.org/abs/1904.07601

作者直播:https://www.bilibili.com/video/av61824733

作者维护了一个收集一系列点云论文、代码、数据集的github仓库:https://github.com/Yochengliu/awesome-point-cloud-analysis

这篇paper是CVPR 2019 Oral & Best paper finalist

Abstract & Introduction

在点云中,由于不规则点中隐含的形状很难捕捉,使得点云分析非常具有挑战性。在本文中,作者针对点云数据提出了RS-CNN,即Relation-Shape Convolutional Neural Network,其核心思想是从几何拓扑中学习点云关系信息。RS-CNN在多个数据集中都取得了SOTA的表现。
主要贡献如下:

  • 提出了一种新型的从关系中学习的卷积算子关系形状卷积。它可以显式地对点的几何关系进行编码,从而在很大程度上提高了对形状的感知能力和鲁棒性。即,RS-Conv
  • 提出一个具有关系形状卷积的深层层次结构,即,RS-CNN。将规则网格CNN扩展到不规则配置,实现点云的上下文形状感知学习。即,基于RS-Conv设计的RS-CNN
  • 在三个任务中对具有挑战性的基准进行广泛的实验,以及深入的经验和理论分析,证明RS-CNN达到了SOTA的水平。即,精度高效果好(modelnet40 93.6)

Shape-Aware Representation Learning

首先,作者归纳了一个通用的卷积公式
\[
f_{P_{sub}}=\sigma(\mathcal{A}(\{\tau(f_{x_{j}}),\forall x_j\})),d_{ij}<r\forall(x_j) \in \mathcal{N}(x_i)
\]
其中,\(x\)表示3D点,\(f_{x_j}\)表示\({x_j}\)的特征向量,\(d_{ij}\)是\(x_i\)和\(x_j\)之间的欧式距离Euclidean distance,\(\tau\)用于转化单点特征,\(\mathcal{A}\)表示聚合函数,\(\sigma\)为激活函数。在这个公式中,\(\mathcal{A}\)和\(\tau\)的定义很关键,也就是这篇paper的创新所在。

首先,如果将这个公式套用在2D图像当中,则\(\tau(f_{x_{j}})=W_j \cdot f_{x_j}\),其中\(w_j\)为learnable weight(可以理解为卷积核),“\(\cdot\)”表示点乘,\(\mathcal{A}\)表示求和,其实就是一个卷积操作。而传统卷积有两个问题,1是不具备置换不变性,2是没有学习到形状信息。因此,作者对\(\mathcal{A}\)和\(\tau\)进行了修改,使其处理点云信息时,具有置换不变性,以及能够学习到形状信息。置换不变性在pointnet中已经实现,就是用max来表示\(\mathcal{A}\),那么剩下的就是学习形状信息,那么如何学习形状信息?就是通过这个\(\tau\)实现的。
为了捕获形状信息(或者关系信息),作者将\(\tau\)定义为:
\[
\tau(f_{x_{j}})=W_{ij} \cdot f_{x_j}=\mathcal{M}(h_{ij})\cdot f_{x_j}
\]
\(\mathcal{M}\)用于将两个点的关系映射为high-level的信息(\(\mathcal{M}\)实际上就是MLP,将低维特征映射成高维特征,而低维特征就是点的位置关系,比如两个点间的距离,相对坐标等),而\(h_{ij}\)就是低维特征。
RS-Conv的流程图如下:

  1. 首先通过FPS进行采样,得到质心\(X_i\)
  2. 在球形领域寻找近邻,\(X_j\)
  3. 对于每个邻居点j,计算j和i的low-level信息,即\(h_{ij}\),\(h_{ij}\)的表示方法很多,作者在论文中将其定义为\(h_{ij}=[3D-Ed,x_i-x_j,x_i,x_j]\),即将两点间的欧式距离(1维),相对坐标(3维),i的坐标(3维)和j的坐标(3维)进行拼接,得到一个10维的low-level信息。
  4. 使用MLP将\(h_{ij}\)映射成高维信息,即\(\mathcal{M}(h_{ij})\),得到\(W_{ij}\),注意,这边映射成高维信息的\(W_{ij}\)的维度要和\(f_{x_j}\)的特征维度相同,才可以进行点乘操作
  5. 将得到的\(W_{ij}\)和\(f_{x_j}\)进行点乘。
  6. max操作,聚合所有近邻的信息作为质心\(x_i\)的新特征,接着为了实现更强大的形状感知表示,将\(x_i\)进行进一步的通道提升映射。即上图中的channel-raising mapping

以上就是RS-Conv的操作过程。有点复杂,类比成2D图像的卷积的话,一个明显的区别是RS-Conv的卷积核\(W_{ij}\)是通过\(h_{ij}\)(即低维关系信息)学习来的,这也是本文的最大创新点,但实际上,这个操作在其他论文中也有出现,比如GACnet,DGCNN只是他们定义\(h_{ij}\)的方式不同。
网络结构如下

比较简单,不赘述,具体如何实现需要看代码。

实验

Shape classification.

Shape part segmentation

Normal estimation

消融实验


虽然在modelnet40上取得了93.6的结果,但是看消融实验可知,作者加入了很多trick才得到这样的精度,比如Pointnet++中的多尺度,以及voting test(具体是啥暂不明了),如果去除多尺度和voting test只能达到92.2的精度。虽说创新点少,但论文中那么多的分析也需要大量的积累才能做到。

聚合函数,即\(\mathcal{A}\)的消融实验

对于low-level信息,即\(h_{ij}\)的消融实验

总结

在这项工作中,作者提出了RS-CNN,即 Relation-Shape Convolutional Neural Network,它将规则的网格CNN扩展到不规则的配置来进行点云分析。 RS-CNN的核心是一种从低维信息中学习relation的新型的卷积运算器。通过这种方式,可以对点的空间布局进行明确的推理,从而获得判断形状的意识。此外,还可以获得良好的几何关系支撑,如对刚性变换的鲁棒性。因此,RS-CNN可以实现上下文感知的形状学习,具有很高的学习效率。

想法:
其实这篇paper的创新不大,除去多尺度和voting test,其精度只有92.2。目前看了一些点云分类的paper,感觉这些paper都有点类似。而对于modelnet40,其40个类别数量分布差异很大,实际上当我们不断训练,提高0点几个点的时候,有些类别应该已经严重过拟合,我们在玩什么啊,令人深思啊。

Relation-Shape Convolutional Neural Network for Point Cloud Analysis(CVPR 2019)的更多相关文章

  1. 论文笔记:(CVPR2019)Relation-Shape Convolutional Neural Network for Point Cloud Analysis

    目录 摘要 一.引言 二.相关工作 基于视图和体素的方法 点云上的深度学习 相关性学习 三.形状意识表示学习 3.1关系-形状卷积 建模 经典CNN的局限性 变换:从关系中学习 通道提升映射 3.2性 ...

  2. Tensorflow - Implement for a Convolutional Neural Network on MNIST.

    Coding according to TensorFlow 官方文档中文版 中文注释源于:tf.truncated_normal与tf.random_normal TF-卷积函数 tf.nn.con ...

  3. tensorflow MNIST Convolutional Neural Network

    tensorflow MNIST Convolutional Neural Network MNIST CNN 包含的几个部分: Weight Initialization Convolution a ...

  4. 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)

    Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...

  5. 卷积神经网络(Convolutional Neural Network,CNN)

    全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网 ...

  6. Convolutional Neural Network in TensorFlow

    翻译自Build a Convolutional Neural Network using Estimators TensorFlow的layer模块提供了一个轻松构建神经网络的高端API,它提供了创 ...

  7. 卷积神经网络(Convolutional Neural Network, CNN)简析

    目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID ...

  8. HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL DEEP CONVOLUTIONAL NEURAL NETWORK阅读笔记

    HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL  DEEP  CONVOLUTIONAL NEURAL NETWORK 论文地址:https:/ ...

  9. A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK文章笔记

    A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK 文章地址:https://ieeex ...

随机推荐

  1. Ubuntu18.04 安装谷歌BBR

    说明:Ubuntu 18.04前几天发布了,改变挺大的,内核也直接升到了正式版4.15,而BBR内核要求为4.9,也就是说满足了,所以我们不需要换内核就可以很快的开启BBR,这里简单说下方法. 提示: ...

  2. zepto源码分析·core模块

    准备说明 该模块定义了库的原型链结构,生成了Zepto变量,并将其以'Zepto'和'$'的名字注册到了window,然后开始了其它模块的拓展实现. 模块内部除了对选择器和zepto对象的实现,就是一 ...

  3. 《大数据实时计算引擎 Flink 实战与性能优化》新专栏

    基于 Flink 1.9 讲解的专栏,涉及入门.概念.原理.实战.性能调优.系统案例的讲解. 专栏介绍 扫码下面专栏二维码可以订阅该专栏 首发地址:http://www.54tianzhisheng. ...

  4. 来玩一局CS吗?UE4射击游戏的独立服务器构建

    前言   根据UE4官方文档的介绍,UE4引擎在架构时就已经考虑到了多人游戏的情景,多人游戏基于客户端-服务器模式(CS模式).也就是说,会有一个服务器担当游戏状态的主控者,而连接的客户端将保持近似的 ...

  5. (IDEA) 搭建Maven并使用Maven打包部署

    1.配置Maven的环境变量 a.首先我们去maven官网下载Maven程序,解压到安装目录,如图所示: b.配置M2_HOME的环境变量,然后将该变量添加到Path中 备注:必须要有JAVA_HOM ...

  6. SpringBoot2.1.9+dubbo2.7.3+Nacos1.1.4构建你的微服务体系

    简单几步使用最新版本的DUBBO构建你的微服务体系 NACOS注册中心 从github下载最新版本的nacos 上传至服务器并解压 单机启动sh startup.sh -m standalone na ...

  7. 最全的access2013教程 access 2010教程 access 2007教程 Access 2003教程

    最全的access2013教程 access 2010教程 access 2007教程 Access 2003教程 都在这个access中国网站里 http://www.office-cn.net/o ...

  8. 【原创】go语言学习(十一)package简介

    目录 Go源码组织方式 main函数和main包 编译命令 自定义包 init函数以及执行行顺序 _标识符 Go源码组织方式 1. Go通过package的方式来组织源码 package 包名 注意: ...

  9. Feeling after reading《Jane Eyre》

    Yesterday I read and listened over the book named <Jane Eyre>, the book is very thoughtful, th ...

  10. 学习笔记64_k邻近算法

    1 .假定已知数据的各个属性值,以及其类型,例如: 电影名称 打斗镜头 接吻镜头 电影类别 m1 3 104 爱情片 m2 2 100 爱情片 m3 1 81 爱情片 m4 2 90 爱情片 w1 1 ...