Description

给你一个无限长的数组,初始的时候都为0,有3种操作:

操作1是把给定区间[l,r] 设为1,

操作2是把给定区间[l,r] 设为0,

操作3把给定区间[l,r] 0,1反转。

一共n个操作,每次操作后要输出最小位置的0。

Input

第一行一个整数n,表示有n个操作

接下来n行,每行3个整数op,l,r表示一个操作

Output

共n行,一行一个整数表示答案

Sample Input

3
1 3 4
3 1 6
2 1 3

Sample Output

1
3
1

HINT

对于30%的数据1≤n≤1000,1≤l≤r≤1e18

对于100%的数据1≤n≤100000,1≤l≤r≤1e18

l,r最大可达1e18,肯定要离散化。

有大量的区间修改的操作——考虑线段树

解决方法:

离散化+线段树

首先离散化。

离散化时将每一次操作的区间的l,r,r+1放入一个数组。lower_bound离散化,得到离散化后的l,r。

为什么要放入r+1?

像这样,离散化后,1-2,3-4区间都为1,本来应该有0的存在,但在线段树上却没有,这时候就要用r+1把这个“坑”给填上。

离散化后:

线段树记录\(minn[i][0]\),\(minn[i][1]\),表示在该区间0和1最早在哪个点出现,若没出现过,minn=INF;

操作1,2: 区间修改\(minn[i][0]\),\(minn[i][1]\),\(sum[i]\)懒标记。

操作3: 交换\(minn[i][0]\),\(minn[i][1]\),\(lazy[i]\)懒标记记录是否换了回来,若没换回来,pushdown。

总体的思路就是这样了,代码有点难调试,一定要耐心打,用心调。

#include<bits/stdc++.h>
#define inf 1e9
using namespace std;
struct data
{
int op;
long long l,r;
}q[2000001];
int lazy[2000001],minn[2000001][2],sum[2000001],op,n,cnt,cnt1;
long long l,r,b[2000001];
void build(int hao,int l,int r)
{
lazy[hao]=0;
sum[hao]=-1;
minn[hao][0]=l;
minn[hao][1]=inf;
if(l==r)
{
return;
}
int mid=(l+r)/2;
build(hao<<1,l,mid);
build(hao<<1|1,mid+1,r);
}
void pushdown(int hao,int l,int r)
{
int mid=(l+r)/2;
if(sum[hao]!=-1)//下放sum
{
int p=sum[hao];
sum[hao<<1]=sum[hao<<1|1]=p;
lazy[hao<<1]=lazy[hao<<1|1]=0;
minn[hao<<1][p]=l;
minn[hao<<1|1][p]=mid+1;
minn[hao<<1][p^1]=inf;
minn[hao<<1|1][p^1]=inf;
sum[hao]=-1;
}
if(lazy[hao])//下放lazy
{
lazy[hao<<1]^=1;
lazy[hao<<1|1]^=1;
swap(minn[hao<<1][0],minn[hao<<1][1]);
swap(minn[hao<<1|1][0],minn[hao<<1|1][1]);
lazy[hao]=0;
}
}
void update(int hao,int l,int r,int L,int R,int num)//操作1,2
{
if(L<=l&&R>=r)
{
sum[hao]=num;
minn[hao][num]=l;
lazy[hao]=0;
minn[hao][num^1]=inf;
}else{
pushdown(hao,l,r);
int mid=(l+r)/2;
if(L<=mid)
{
update(hao<<1,l,mid,L,R,num);
}
if(R>mid)
{
update(hao<<1|1,mid+1,r,L,R,num);
}
minn[hao][0]=min(minn[hao<<1][0],minn[hao<<1|1][0]);
minn[hao][1]=min(minn[hao<<1][1],minn[hao<<1|1][1]);
}
}
void change(int hao,int l,int r,int L,int R)//操作3
{
if(L<=l&&R>=r)
{
lazy[hao]^=1;
swap(minn[hao][0],minn[hao][1]);
}else{
pushdown(hao,l,r);
int mid=(l+r)/2;
if(L<=mid)
{
change(hao<<1,l,mid,L,R);
}
if(R>mid)
{
change(hao<<1|1,mid+1,r,L,R);
}
minn[hao][0]=min(minn[hao<<1][0],minn[hao<<1|1][0]);
minn[hao][1]=min(minn[hao<<1][1],minn[hao<<1|1][1]);
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d%lld%lld",&op,&l,&r);
q[i].op=op;
q[i].l=l;
q[i].r=r;
b[++cnt]=l;
b[++cnt]=r;
b[++cnt]=r+1;
}
b[++cnt]=1;
sort(b+1,b+cnt+1);
b[0]=-0x7f7f7f7f;
for(int i=1;i<=cnt;i++)//去重
{
if(b[i]==b[i-1])
{
continue;
}
b[++cnt1]=b[i];
}
cnt=cnt1;
build(1,1,cnt);
for(int i=1;i<=n;i++)
{
int l=lower_bound(b,b+cnt+1,q[i].l)-b;//离散化
int r=lower_bound(b,b+cnt+1,q[i].r+1)-b-1;
if(q[i].op==1)
{
update(1,1,cnt,l,r,1);
}else{
if(q[i].op==2)
{
update(1,1,cnt,l,r,0);
}else{
change(1,1,cnt,l,r);
}
}
printf("%lld\n",b[minn[1][0]]);
}
return 0;
}
/*
3
1 3 4
3 1 6
2 1 3
*/

【XSY2484】mex的更多相关文章

  1. 【XSY2484】mex 离散化 线段树

    题目大意 给你一个无限长的数组,初始的时候都为\(0\),有3种操作: 操作\(1\)是把给定区间\([l,r]\)设为\(1\): 操作\(2\)是把给定区间\([l,r]\)设为\(0\): 操作 ...

  2. 【BZOJ3585】mex

    Description 有一个长度为n的数组{a1,a2,-,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行開始,每行一个询问l, ...

  3. 【数学】mex是什么

    最近在看博弈论,SG函数,所以什么是mex呢 然后百度了一下得到: mex(S) 的值为集合 S 中没有出现过的最小自然数.例如,mex({1,2}) = 0.mex({0,1,2,3}) = 4

  4. 【bzoj3585】mex 线段树 mex,sg

    Description 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问l, ...

  5. 【BZOJ3585/3339】mex 莫队算法+分块

    [BZOJ3585]mex Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. ...

  6. 【codeforces】【比赛题解】#862 CF Round #435 (Div.2)

    这次比赛打得很舒服,莫名得了个Rank41,涨了219的Rating,就比较优秀.不过还是没有闫神厉害啊.题目链接::P. [A]MEX 题意: Evil博士把Mahmoud和Ehab绑架到了邪恶之地 ...

  7. 【Luogu4137】Rmq Problem/mex (莫队)

    [Luogu4137]Rmq Problem/mex (莫队) 题面 洛谷 题解 裸的莫队 暴力跳\(ans\)就能\(AC\) 考虑复杂度有保证的做法 每次计算的时候把数字按照大小也分块 每次就枚举 ...

  8. 【HDU1848】Fibonacci again and again(博弈论)

    [HDU1848]Fibonacci again and again(博弈论) 题面 Hdu 你有三堆石子,每堆石子的个数是\(n,m,p\),你每次可以从一堆石子中取走斐波那契数列中一个元素等数量的 ...

  9. 【codeforces】940F题解

    CF Round #466的最后一题,颇有难度,正解是带修改莫队算法. [题意] 给定一个长度为\(n\)的数组\(a\),并且要求执行\(q\)个操作,有两种不同的操作: ①询问一个区间\([l,r ...

随机推荐

  1. PSSH工具

    目录 PSSH工具 参考 PSSH工具的介绍 PSSH工具的使用 PSSH工具

  2. 使用sp_getAppLock引发的一个小问题

    这几天线上频繁报如下的错误:“无法释放应用程序锁(数据库主体: 'public',资源: 'aa'),原因是当前没有保留该应用程序锁.” 下面是写法: declare @result int; BEG ...

  3. Windows Error的错误代码

    时不时会用到,记录下 0操作成功完成. 1功能错误. 2系统找不到指定的文件. 3系统找不到指定的路径. 4系统无法打开文件. 5拒绝访问. 6句柄无效. 7存储控制块被损坏. 8存储空间不足,无法处 ...

  4. python 虚拟环境配置

    刚学习 python 的同学经常会遇到一个问题: 已经安装了特定的包或者第三库,但是 pycharm 总是提示没有找到.

  5. C#基于Quartz.NET实现任务调度并部署Windows服务

    一.Quartz.NET介绍 Quartz.NET是一个强大.开源.轻量的作业调度框架,是 OpenSymphony 的 Quartz API 的.NET移植,用C#改写,可用于winform和asp ...

  6. GLSL 参考GIMP源码实现色彩平衡调节

    色彩平衡 修图工具中的色彩平衡一般用来根据亮度等级调整图片中颜色的偏色,调整偏色涉及到加色原理和减色原理 其实我们通过三原色加色原理的图片就可以知道,红色的对比色是青色,蓝色的对比色是黄色,绿色的对比 ...

  7. Python3实战spark大数据分析及调度 ☝☝☝

    Python3实战spark大数据分析及调度  ☝☝☝ 一.实例分析 1.1 数据 student.txt 1.2 代码 二.代码解析 2.1函数解析 2.1.1 collect() RDD的特性 在 ...

  8. Java编程思想——第17章 容器深入研究 读书笔记(二)

    五.List的功能方法 排除Collection已包含的方法外还增加了 boolean addAll(int index, Collection<? extends E> c);从索引位置 ...

  9. 项目代码管理工具Git的总结

    在项目的开发中,代码的同步管理很重要,团队的几个人可以通过免费的github管理自己的开源项目代码,高效方便.下面说说,开发中经常用到的git指令操作,基于github平台. 0.配置提交者的账户和邮 ...

  10. JavaScript-改变this指向

    一.this指向的详解 概括:this的指向到底是指向哪里?通常来说,只有当函数执行的时候才可以确定this指向的到底是谁,简单的也可以这么说:this最终指向的是那个调用它的对象. 常见的一般有以下 ...