【XSY2484】mex
Description
给你一个无限长的数组,初始的时候都为0,有3种操作:
操作1是把给定区间[l,r] 设为1,
操作2是把给定区间[l,r] 设为0,
操作3把给定区间[l,r] 0,1反转。
一共n个操作,每次操作后要输出最小位置的0。
Input
第一行一个整数n,表示有n个操作
接下来n行,每行3个整数op,l,r表示一个操作
Output
共n行,一行一个整数表示答案
Sample Input
3
1 3 4
3 1 6
2 1 3
Sample Output
1
3
1
HINT
对于30%的数据1≤n≤1000,1≤l≤r≤1e18
对于100%的数据1≤n≤100000,1≤l≤r≤1e18
l,r最大可达1e18,肯定要离散化。
有大量的区间修改的操作——考虑线段树
解决方法:
离散化+线段树
首先离散化。
离散化时将每一次操作的区间的l,r,r+1放入一个数组。lower_bound离散化,得到离散化后的l,r。
为什么要放入r+1?

像这样,离散化后,1-2,3-4区间都为1,本来应该有0的存在,但在线段树上却没有,这时候就要用r+1把这个“坑”给填上。
离散化后:
线段树记录\(minn[i][0]\),\(minn[i][1]\),表示在该区间0和1最早在哪个点出现,若没出现过,minn=INF;
操作1,2: 区间修改\(minn[i][0]\),\(minn[i][1]\),\(sum[i]\)懒标记。
操作3: 交换\(minn[i][0]\),\(minn[i][1]\),\(lazy[i]\)懒标记记录是否换了回来,若没换回来,pushdown。
总体的思路就是这样了,代码有点难调试,一定要耐心打,用心调。
#include<bits/stdc++.h>
#define inf 1e9
using namespace std;
struct data
{
int op;
long long l,r;
}q[2000001];
int lazy[2000001],minn[2000001][2],sum[2000001],op,n,cnt,cnt1;
long long l,r,b[2000001];
void build(int hao,int l,int r)
{
lazy[hao]=0;
sum[hao]=-1;
minn[hao][0]=l;
minn[hao][1]=inf;
if(l==r)
{
return;
}
int mid=(l+r)/2;
build(hao<<1,l,mid);
build(hao<<1|1,mid+1,r);
}
void pushdown(int hao,int l,int r)
{
int mid=(l+r)/2;
if(sum[hao]!=-1)//下放sum
{
int p=sum[hao];
sum[hao<<1]=sum[hao<<1|1]=p;
lazy[hao<<1]=lazy[hao<<1|1]=0;
minn[hao<<1][p]=l;
minn[hao<<1|1][p]=mid+1;
minn[hao<<1][p^1]=inf;
minn[hao<<1|1][p^1]=inf;
sum[hao]=-1;
}
if(lazy[hao])//下放lazy
{
lazy[hao<<1]^=1;
lazy[hao<<1|1]^=1;
swap(minn[hao<<1][0],minn[hao<<1][1]);
swap(minn[hao<<1|1][0],minn[hao<<1|1][1]);
lazy[hao]=0;
}
}
void update(int hao,int l,int r,int L,int R,int num)//操作1,2
{
if(L<=l&&R>=r)
{
sum[hao]=num;
minn[hao][num]=l;
lazy[hao]=0;
minn[hao][num^1]=inf;
}else{
pushdown(hao,l,r);
int mid=(l+r)/2;
if(L<=mid)
{
update(hao<<1,l,mid,L,R,num);
}
if(R>mid)
{
update(hao<<1|1,mid+1,r,L,R,num);
}
minn[hao][0]=min(minn[hao<<1][0],minn[hao<<1|1][0]);
minn[hao][1]=min(minn[hao<<1][1],minn[hao<<1|1][1]);
}
}
void change(int hao,int l,int r,int L,int R)//操作3
{
if(L<=l&&R>=r)
{
lazy[hao]^=1;
swap(minn[hao][0],minn[hao][1]);
}else{
pushdown(hao,l,r);
int mid=(l+r)/2;
if(L<=mid)
{
change(hao<<1,l,mid,L,R);
}
if(R>mid)
{
change(hao<<1|1,mid+1,r,L,R);
}
minn[hao][0]=min(minn[hao<<1][0],minn[hao<<1|1][0]);
minn[hao][1]=min(minn[hao<<1][1],minn[hao<<1|1][1]);
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d%lld%lld",&op,&l,&r);
q[i].op=op;
q[i].l=l;
q[i].r=r;
b[++cnt]=l;
b[++cnt]=r;
b[++cnt]=r+1;
}
b[++cnt]=1;
sort(b+1,b+cnt+1);
b[0]=-0x7f7f7f7f;
for(int i=1;i<=cnt;i++)//去重
{
if(b[i]==b[i-1])
{
continue;
}
b[++cnt1]=b[i];
}
cnt=cnt1;
build(1,1,cnt);
for(int i=1;i<=n;i++)
{
int l=lower_bound(b,b+cnt+1,q[i].l)-b;//离散化
int r=lower_bound(b,b+cnt+1,q[i].r+1)-b-1;
if(q[i].op==1)
{
update(1,1,cnt,l,r,1);
}else{
if(q[i].op==2)
{
update(1,1,cnt,l,r,0);
}else{
change(1,1,cnt,l,r);
}
}
printf("%lld\n",b[minn[1][0]]);
}
return 0;
}
/*
3
1 3 4
3 1 6
2 1 3
*/
【XSY2484】mex的更多相关文章
- 【XSY2484】mex 离散化 线段树
题目大意 给你一个无限长的数组,初始的时候都为\(0\),有3种操作: 操作\(1\)是把给定区间\([l,r]\)设为\(1\): 操作\(2\)是把给定区间\([l,r]\)设为\(0\): 操作 ...
- 【BZOJ3585】mex
Description 有一个长度为n的数组{a1,a2,-,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行開始,每行一个询问l, ...
- 【数学】mex是什么
最近在看博弈论,SG函数,所以什么是mex呢 然后百度了一下得到: mex(S) 的值为集合 S 中没有出现过的最小自然数.例如,mex({1,2}) = 0.mex({0,1,2,3}) = 4
- 【bzoj3585】mex 线段树 mex,sg
Description 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问l, ...
- 【BZOJ3585/3339】mex 莫队算法+分块
[BZOJ3585]mex Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. ...
- 【codeforces】【比赛题解】#862 CF Round #435 (Div.2)
这次比赛打得很舒服,莫名得了个Rank41,涨了219的Rating,就比较优秀.不过还是没有闫神厉害啊.题目链接::P. [A]MEX 题意: Evil博士把Mahmoud和Ehab绑架到了邪恶之地 ...
- 【Luogu4137】Rmq Problem/mex (莫队)
[Luogu4137]Rmq Problem/mex (莫队) 题面 洛谷 题解 裸的莫队 暴力跳\(ans\)就能\(AC\) 考虑复杂度有保证的做法 每次计算的时候把数字按照大小也分块 每次就枚举 ...
- 【HDU1848】Fibonacci again and again(博弈论)
[HDU1848]Fibonacci again and again(博弈论) 题面 Hdu 你有三堆石子,每堆石子的个数是\(n,m,p\),你每次可以从一堆石子中取走斐波那契数列中一个元素等数量的 ...
- 【codeforces】940F题解
CF Round #466的最后一题,颇有难度,正解是带修改莫队算法. [题意] 给定一个长度为\(n\)的数组\(a\),并且要求执行\(q\)个操作,有两种不同的操作: ①询问一个区间\([l,r ...
随机推荐
- Github | 吴恩达新书《Machine Learning Yearning》完整中文版开源
最近开源了周志华老师的西瓜书<机器学习>纯手推笔记: 博士笔记 | 周志华<机器学习>手推笔记第一章思维导图 [博士笔记 | 周志华<机器学习>手推笔记第二章&qu ...
- Linux 命令个人笔记
[表示命令]man -f [] 显示一个命令的功能whatis [] 显示一个命令的功能ls -lR | grep '^-' | wc -l 统计一个目录下总共有多少个文件head [-n numbe ...
- meta标签中设置以极速模式打开网页
1.网页meta标签中X-UA-Compatible属性的使用的极速模式 <meta http-equiv="X-UA-Compatible" content="I ...
- django-drf框架中排序和查询组件
0910自我总结 django-drf框架中排序和查询组件 一查询相关 1.模糊查询 1.导入模块组件 from rest_framework.filters import SearchFilter ...
- Java学习笔记之方法
前言:如果把所有代码都写到main方法中,后果是什么? 1,结构混乱 不清晰 2,不能重用 方法:规则:方法写在类中,不能写在其它方法中.方法不能嵌套方法 如何定义方法: 访问修饰符 返 ...
- 朋友外包干了5年java,居然不知道dubbo-monitor是怎么用的?
Dubbo工具--dubbo-monitor监控平台的发布和使用 1)下载 https://github.com/alibaba/dubbo/archive/dubbo-2.5.8.zip 2)编译 ...
- CSP2019 考前复习
动态规划 [NOIP2016]愤怒的小鸟(状压+思维) 多组数据题 共有i只猪,给出每只猪的坐标,鸟的飞行轨迹为经过原点的抛物线,求最少要多少只鸟能消灭所有的猪 \[ 猪数量n<=18 \] 看 ...
- 防止CSRF跨站请求伪造
CSRF(Cross-site request forgery)跨站请求伪造,也被称为“One Click Attack”或者Session Riding,通常缩写为CSRF或者XSRF,是一种对网站 ...
- [Luogu2824] [HEOI2016/TJOI2016]排序
题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这个全排列序列进行 ...
- [USACO17FEB]Why Did the Cow Cross the Road III S
题目描述 Why did the cow cross the road? Well, one reason is that Farmer John's farm simply has a lot of ...