机器学习之感知器和线性回归、逻辑回归以及SVM的相互对比
线性回归是回归模型
感知器、逻辑回归以及SVM是分类模型
线性回归:f(x)=wx+b
感知器:f(x)=sign(wx+b)其中sign是个符号函数,若wx+b>=0取+1,若wx+b<0取-1
它的学习策略是最小化误分类点到超平面的距离,

逻辑回归:f(x)=sigmoid(wx+b)取值范围在0-1之间。
感知器和SVM的对比:
它俩都是用于分类的模型,且都以sign符号函数作为分类决策函数。但是感知器只适用于线性可分的数据,而SVM可以通过核函数处理非线性可分的数据。拿感知器和线性可分支持向量机对比,他们的目标都是希望找到一个超平面能把数据分开,同时分类决策函数使用的都是sign符号函数,不同之处在于优化目标不同,感知机是通过最小化误分类点到超平面的距离来对参数进行优化,从而确定这个超平面,而SVM是通过最大化支持向量距离超平面这个最小距离来对参数进行优化。
Logistic和SVM的区别:
SVM分为线性可分支持向量机,线性支持向量机以及非线性可分支持向量机,它还适用于对非线性可分的数据进行分类。Logistic回归一般用于处理线性可分的数据。这里进行线性可分支持向量机和Logistic回归的对比,SVM的目标是希望找到一个超平面能把数据分开,以sign符号函数作为分类决策函数,通过最大化支持向量距离超平面这个最小距离来对参数进行优化。逻辑回归假设数据服从伯努利分布,以最大化条件概率为学习策略(优化目标),以对数似然函数为损失函数,运用梯度下降法来优化参数,以sigmoid函数作为分类决策函数。
机器学习之感知器和线性回归、逻辑回归以及SVM的相互对比的更多相关文章
- 线性回归,逻辑回归,神经网络,SVM的总结
目录 线性回归,逻辑回归,神经网络,SVM的总结 线性回归,逻辑回归,神经网络,SVM的总结 详细的学习笔记. markdown的公式编辑手册. 回归的含义: 回归就是指根据之前的数据预测一个准确的输 ...
- 机器学习(1)- 概述&线性回归&逻辑回归&正则化
根据Andrew Ng在斯坦福的<机器学习>视频做笔记,已经通过李航<统计学习方法>获得的知识不赘述,仅列出提纲. 1 初识机器学习 1.1 监督学习(x,y) 分类(输出y是 ...
- [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...
- 一小部分机器学习算法小结: 优化算法、逻辑回归、支持向量机、决策树、集成算法、Word2Vec等
优化算法 先导知识:泰勒公式 \[ f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] 一阶泰勒展开: \[ f(x)\approx ...
- Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS
Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...
- 感知器、逻辑回归和SVM的求解
这篇文章将介绍感知器.逻辑回归的求解和SVM的部分求解,包含部分的证明.本文章涉及的一些基础知识,已经在<梯度下降.牛顿法和拉格朗日对偶性>中指出,而这里要解决的问题,来自<从感知器 ...
- stanford coursera 机器学习编程作业 exercise 3(逻辑回归实现多分类问题)
本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnb ...
- 【原】Coursera—Andrew Ng机器学习—Week 3 习题—Logistic Regression 逻辑回归
课上习题 [1]线性回归 Answer: D A 特征缩放不起作用,B for all 不对,C zero error不对 [2]概率 Answer:A [3]预测图形 Answer:A 5 - x1 ...
- 机器学习算法笔记1_2:分类和逻辑回归(Classification and Logistic regression)
形式: 採用sigmoid函数: g(z)=11+e−z 其导数为g′(z)=(1−g(z))g(z) 如果: 即: 若有m个样本,则似然函数形式是: 对数形式: 採用梯度上升法求其最大值 求导: 更 ...
随机推荐
- mybatis foreach方法遍历对象
<delete id="deleteAppUserByIds"> delete from app_userinfo where <foreach i ...
- Linux服务器下配置Java环境、JDK
前言 可以解决问题有/etc/profile与~/.bashrc环境文件区别 文件权限问题,只读readonly Java环境搭建 一.下载JDK包 地址:jdk1.8提取码:gx0b 把文件放到Li ...
- thinkphp5.1单模块设置
thinkphp5.1单模块 1. // 是否支持多模块'app_multi_module' => false, // 自动搜索控制器'controller_auto_search' => ...
- Lambda,递归
1.Lamdba表达式 1.Lambda表达式的标准格式 三部分组成: 一些参数 一个箭头 一段代码 格式: (参数列表) -> {一些重写方法的代码} 解释说明格式: ():接口中抽象方法的参 ...
- 曾Python培训讲师-2年Python开发无包装简历-20191217-可公开
目录 个人介绍 技能介绍 项目经历 自我评价 简历非完整版,需要完整版看下述信息,禁止任何一切私人用途.转发 我生日是27号,那就27元一份,有需求的来购买!只会涨价不会降价,大概卖10份涨1元:曾P ...
- 前端笔记之Vue(六)分页排序|酷表单实战&Vue-cli
一.分页排序案例 后端负责提供接口(3000) 前端负责业务逻辑(8080) 接口地址:从8080跨域到3000拿数据 http://127.0.0.1:3000/shouji http://127. ...
- VRF--虚拟路由表
VRF Virtual routing forwarding,虚拟路由转发表,简称VPN.他能在两个site之间建立两个不用的路由表,相互隔离,把每台交换机逻辑上分成多台虚拟交换机,即多VPN路由转发 ...
- gitlab的安装配置与简单使用
安装 gitlab,建议系统内存 6G ,不然会报错. 一.如何安装 gitlab 下载 gitlab 的 RPM 包 https://packages.gitlab.com/gitlab/gitla ...
- 英语阅读——Speaking Chinese in America
这篇文章是<新视野大学英语>第四册的第五单元的文章,第一遍英语阅读完后对比中文,发现自己对作者的观点理解有些出入.作者反对的是认为中国说话客套而美国人直接的观点,利用自己的经历表达了中文也 ...
- c#微信公众号开发一----基本设置,服务器配置token验证,获取timestamp/nonce/signature
一.c#微信公众号开发----基本设置 参考微信官方文档 https://developers.weixin.qq.com/doc/offiaccount/Basic_Information/Acce ...