传送门:https://www.luogu.org/problemnew/show/P3317

这道题的推导公式还是比较好理解的,但是由于这个矩阵是小数的,要注意高斯消元方法的使用;

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> /* ⊂_ヽ
  \\ Λ_Λ 来了老弟
   \('ㅅ')
    > ⌒ヽ
   /   へ\
   /  / \\
   レ ノ   ヽ_つ
  / /
  / /|
 ( (ヽ
 | |、\
 | 丿 \ ⌒)
 | |  ) /
'ノ )  Lノ */ using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define boost ios::sync_with_stdio(false);cin.tie(0)
#define rep(a, b, c) for(int a = (b); a <= (c); ++ a)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c); const ll oo = 1ll<<;
const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} inline void cmax(int &x,int y){if(x<y)x=y;}
inline void cmax(ll &x,ll y){if(x<y)x=y;}
inline void cmin(int &x,int y){if(x>y)x=y;}
inline void cmin(ll &x,ll y){if(x>y)x=y;} /*-----------------------showtime----------------------*/
const int maxn = ;
double mp[maxn][maxn];
double a[maxn][maxn]; int n; double Gauss(int n){
for(int i=; i<n; i++){
int mx = i;
for(int j=i+; j<n; j++){
if(fabs(a[mx][i]) < fabs(a[j][i])) mx = j;
}
swap(a[i], a[mx]);
for(int j=i+; j<n; j++){
double tmp = a[j][i]/a[i][i];
for(int k=i+; k<n; k++)
a[j][k] -= a[i][k] * tmp;
}
}
double ans = ;
for(int i=; i<n; i++) ans *= a[i][i];
return fabs(ans);
} int main(){
scanf("%d", &n);
double tmp = ;
for(int i=; i<=n; i++) {
for(int j=; j<=n; j++) {
scanf("%lf", &mp[i][j]);
if(fabs(1.0 - mp[i][j]) < esp) mp[i][j] = 1.0- esp;
if(i < j)tmp = tmp * (1.0-mp[i][j]);
mp[i][j] = mp[i][j] / (1.0 - mp[i][j]);
}
} for(int i=; i<=n; i++){
for(int j=i+; j<=n; j++){
a[i][j] = a[j][i] = -mp[i][j];
a[i][i] += mp[i][j];
a[j][j] += mp[i][j];
}
}
printf("%.10f\n", Gauss(n) * tmp);
return ;
}

P3317 [SDOI2014]重建 变元矩阵树定理 高斯消元的更多相关文章

  1. 【BZOJ3534】【Luogu P3317】 [SDOI2014]重建 变元矩阵树,高斯消元

    题解看这里,主要想说一下以前没见过的变元矩阵树还有前几个题见到的几个小细节. 邻接矩阵是可以带权值的.求所有生成树边权和的时候我们有一个基尔霍夫矩阵,是度数矩阵减去邻接矩阵.而所谓变元矩阵树实际上就是 ...

  2. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  3. BZOJ4031 [HEOI2015]小Z的房间 【矩阵树定理 + 高斯消元】

    题目链接 BZOJ4031 题解 第一眼:这不裸的矩阵树定理么 第二眼:这个模\(10^9\)是什么鬼嘛QAQ 想尝试递归求行列式,发现这是\(O(n!)\)的.. 想上高斯消元,却又处理不了逆元这个 ...

  4. CF917D-Stranger Trees【矩阵树定理,高斯消元】

    正题 题目链接:https://www.luogu.com.cn/problem/CF917D 题目大意 给出\(n\)个点的一棵树,对于每个\(k\)求有多少个\(n\)个点的树满足与给出的树恰好有 ...

  5. Wannafly Camp 2020 Day 1D 生成树 - 矩阵树定理,高斯消元

    给出两幅 \(n(\leq 400)\) 个点的无向图 \(G_1 ,G_2\),对于 \(G_1\) 的每一颗生成树,它的权值定义为有多少条边在 \(G_2\) 中出现.求 \(G_1\) 所有生成 ...

  6. 洛谷4208 JSOI2008最小生成树计数(矩阵树定理+高斯消元)

    qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才 ...

  7. SP104 Highways (矩阵树,高斯消元)

    矩阵树定理裸题 //#include <iostream> #include <cstdio> #include <cstring> #include <al ...

  8. luoguP3317 [SDOI2014]重建 变元矩阵树定理 + 概率

    首先,我们需要求的是 $$\sum\limits_{Tree} \prod\limits_{E \in Tree} E(u, v) \prod\limits_{E \notin Tree} (1 - ...

  9. CF917D. Stranger Trees & TopCoder13369. TreeDistance(变元矩阵树定理+高斯消元)

    题目链接 CF917D:https://codeforces.com/problemset/problem/917/D TopCoder13369:https://community.topcoder ...

随机推荐

  1. ld: warning: directory not found for option ''

    iOS开发中经常遇到这样的警告,如图所示: 原因是存在未用到的目录. 解决方法:选择Build Settings,找到Search Paths中的Library Search Paths,如下图 删除 ...

  2. Java 获取操作系统相关的内容

    package com.hikvision.discsetup.util; import java.lang.reflect.Field; import java.net.InetAddress; i ...

  3. 调试过程中发现按f5无法走进jdk源码

    debug 模式 ,在fis=new FileInputStream(file); 行打断点 调试过程中发现按f5无法走进jdk源码 package com.lzl.spring.test; impo ...

  4. HelloDjango 系列教程:Django 的接客之道

    文中涉及的示例代码,已同步更新到 HelloGitHub-Team 仓库 Web 服务简单的说就是处理请求,每个请求就像是一个"顾客".首先热情地把顾客迎接进来,然后满足用户的个性 ...

  5. 启动Eclipse提示找不到虚拟机

    由于硬盘坏了,把所有东西都清光了,今天重新安装Eclipse,出现了一点小插曲 安装的时候出现了这个画面,以前安装也是照着[软件安装管家]的发布装的,幸好还懂得几个英文单词,看了一下提示信息,直译:[ ...

  6. 一个基于TCP/IP的服务器与客户端通讯的小项目(超详细版)

    1.目的:实现客户端向服务器发送数据 原理: 2.建立两个控制台应用,一个为服务器,用于接收数据.一个为客户端,用于发送数据. 关键类与对应方法: 1)类IPEndPoint: 1.是抽象类EndPo ...

  7. mysql docker 主从配置

    主从复制相关 前置条件: docker安装的mysql是5.7.26版本 1. 编排docker-compose文件如下: version: '3' services: mysql-master: v ...

  8. 10.Go-goroutine,waitgroup,互斥锁和channel

    10.1.goroutine goroutine的使用 //Learn_Go/main.go package main import ( "fmt" "time" ...

  9. linux下安装开发环境

    jdk 下载jdk安装包,解压到/usr/java/jdk 配置环境变量: #vi /etc/profile 在该profile文件中最下面添加: JAVA_HOME=/usr/java/jdk1.7 ...

  10. 不可错过的几款GitHub开源项目

    工作之余或者周末感觉无聊?不知道干什么?想继续提高技术,但是不知道做什么的同学,看过来,不妨利用闲暇时间来撸几个 GitHub 上还不错的开源项目,本文推荐的开源项目比较适合新手.及对MVP设计模式不 ...