传送门:https://www.luogu.org/problemnew/show/P3317

这道题的推导公式还是比较好理解的,但是由于这个矩阵是小数的,要注意高斯消元方法的使用;

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> /* ⊂_ヽ
  \\ Λ_Λ 来了老弟
   \('ㅅ')
    > ⌒ヽ
   /   へ\
   /  / \\
   レ ノ   ヽ_つ
  / /
  / /|
 ( (ヽ
 | |、\
 | 丿 \ ⌒)
 | |  ) /
'ノ )  Lノ */ using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define boost ios::sync_with_stdio(false);cin.tie(0)
#define rep(a, b, c) for(int a = (b); a <= (c); ++ a)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c); const ll oo = 1ll<<;
const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} inline void cmax(int &x,int y){if(x<y)x=y;}
inline void cmax(ll &x,ll y){if(x<y)x=y;}
inline void cmin(int &x,int y){if(x>y)x=y;}
inline void cmin(ll &x,ll y){if(x>y)x=y;} /*-----------------------showtime----------------------*/
const int maxn = ;
double mp[maxn][maxn];
double a[maxn][maxn]; int n; double Gauss(int n){
for(int i=; i<n; i++){
int mx = i;
for(int j=i+; j<n; j++){
if(fabs(a[mx][i]) < fabs(a[j][i])) mx = j;
}
swap(a[i], a[mx]);
for(int j=i+; j<n; j++){
double tmp = a[j][i]/a[i][i];
for(int k=i+; k<n; k++)
a[j][k] -= a[i][k] * tmp;
}
}
double ans = ;
for(int i=; i<n; i++) ans *= a[i][i];
return fabs(ans);
} int main(){
scanf("%d", &n);
double tmp = ;
for(int i=; i<=n; i++) {
for(int j=; j<=n; j++) {
scanf("%lf", &mp[i][j]);
if(fabs(1.0 - mp[i][j]) < esp) mp[i][j] = 1.0- esp;
if(i < j)tmp = tmp * (1.0-mp[i][j]);
mp[i][j] = mp[i][j] / (1.0 - mp[i][j]);
}
} for(int i=; i<=n; i++){
for(int j=i+; j<=n; j++){
a[i][j] = a[j][i] = -mp[i][j];
a[i][i] += mp[i][j];
a[j][j] += mp[i][j];
}
}
printf("%.10f\n", Gauss(n) * tmp);
return ;
}

P3317 [SDOI2014]重建 变元矩阵树定理 高斯消元的更多相关文章

  1. 【BZOJ3534】【Luogu P3317】 [SDOI2014]重建 变元矩阵树,高斯消元

    题解看这里,主要想说一下以前没见过的变元矩阵树还有前几个题见到的几个小细节. 邻接矩阵是可以带权值的.求所有生成树边权和的时候我们有一个基尔霍夫矩阵,是度数矩阵减去邻接矩阵.而所谓变元矩阵树实际上就是 ...

  2. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  3. BZOJ4031 [HEOI2015]小Z的房间 【矩阵树定理 + 高斯消元】

    题目链接 BZOJ4031 题解 第一眼:这不裸的矩阵树定理么 第二眼:这个模\(10^9\)是什么鬼嘛QAQ 想尝试递归求行列式,发现这是\(O(n!)\)的.. 想上高斯消元,却又处理不了逆元这个 ...

  4. CF917D-Stranger Trees【矩阵树定理,高斯消元】

    正题 题目链接:https://www.luogu.com.cn/problem/CF917D 题目大意 给出\(n\)个点的一棵树,对于每个\(k\)求有多少个\(n\)个点的树满足与给出的树恰好有 ...

  5. Wannafly Camp 2020 Day 1D 生成树 - 矩阵树定理,高斯消元

    给出两幅 \(n(\leq 400)\) 个点的无向图 \(G_1 ,G_2\),对于 \(G_1\) 的每一颗生成树,它的权值定义为有多少条边在 \(G_2\) 中出现.求 \(G_1\) 所有生成 ...

  6. 洛谷4208 JSOI2008最小生成树计数(矩阵树定理+高斯消元)

    qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才 ...

  7. SP104 Highways (矩阵树,高斯消元)

    矩阵树定理裸题 //#include <iostream> #include <cstdio> #include <cstring> #include <al ...

  8. luoguP3317 [SDOI2014]重建 变元矩阵树定理 + 概率

    首先,我们需要求的是 $$\sum\limits_{Tree} \prod\limits_{E \in Tree} E(u, v) \prod\limits_{E \notin Tree} (1 - ...

  9. CF917D. Stranger Trees & TopCoder13369. TreeDistance(变元矩阵树定理+高斯消元)

    题目链接 CF917D:https://codeforces.com/problemset/problem/917/D TopCoder13369:https://community.topcoder ...

随机推荐

  1. Calico 网络通信原理揭秘

    Calico 是一个纯三层的数据中心网络方案,而且无缝集成像 OpenStack 这种 Iaas 云架构,能够提供可控的 VM.容器.裸机之间的 IP 通信.为什么说它是纯三层呢?因为所有的数据包都是 ...

  2. 【Android】java.lang.StackOverflowError: stack size 8MB

    最近遇到的问题,报了两个错误,如下: java.lang.StackOverflowError: stack size 8MB android.os.TransactionTooLargeExcept ...

  3. Windows上切换java8和java11

    Windows上安装了java8和java11,时不时要切换,于是思考写行命令解决.思路是修改java_home变量.我的java_home变量是设置在系统级别的. 修改环境变量有2个命令,set和s ...

  4. powermockito单元测试之深入实践

    概述 由于最近工作需要, 在项目中要做单元测试, 以达到指定的测试用例覆盖率指标.项目中我们引入的powermockito来编写测试用例, JaCoCo来监控单元测试覆盖率.关于框架的选择, 网上讨论 ...

  5. 利用模板生成html页面(NVelocity)

    公司的网站需要有些新闻,每次的新闻格式都是一样的,而不想每次都查询操作,所以想把这些新闻的页面保存成静态的html,之后搜索了下就找到了这个模板引擎,当然其他的模板引擎可以的,例如:Razor,自己写 ...

  6. 网站安装SSL证书成为影响SEO排名的重要因素之一

    百度谷歌先后发声明倡导站长们使用https链接,同样的网站,https站点要比http站点拥有更好的排名权重.https已经是网站SEO必须要考虑的环节之一了,而https的必要条件就是安装SSL证书 ...

  7. Java统计代码行数

    package test; import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; im ...

  8. 理解MySQL(一)--MySQL介绍

    一.Mysql逻辑架构: 1. 第一层:服务器层的服务,连接\线程处理. 2. 第二层:查询执行引擎,MySQL的核心服务功能,包括查询解析.分析.优化和缓存,所有跨存储引擎的功能都在这一层实现. 3 ...

  9. IBM实习工作(一)

    2019.1.21 今天的任务是完成会计是否在岗配置表格增加操作记录,任务描述:1.  [会计是否在岗配置] 查询结果界面: 修改人编码/修改人/修改时间 字段:2.      字段取值为[会计是否在 ...

  10. Go中的异常处理

    1. errors包 Go 有一个预先定义的 error 接口类型 : type error interface { Error() string } 错误值用来表示异常状态.Go也提供了一个包:er ...