1、 tensorflow简介

Tensorflow 是 google 开源的机器学习工具,在2015年11月其实现正式开源,开源协议Apache 2.0。

Tensorflow采用数据流图(data flow graphs)来计算, 所以首先我们得创建一个数据流流图,然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算. 节点(Nodes)在图中表示数学操作,图中的边(edges)则表示在节点间相互联系的多维数据数组, 即张量(tensor).训练模型时tensor会不断的从数据流图中的一个节点flow到另一节点, 这就是TensorFlow名字的由来.

张量(Tensor):张量有多种. 零阶张量为 纯量或标量 (scalar) 也就是一个数值. 比如 [1],一阶张量为 向量 (vector), 比如 一维的 [1, 2, 3],二阶张量为 矩阵 (matrix), 比如 二维的 [[1, 2, 3],[4, 5, 6],[7, 8, 9]],以此类推, 还有三维以上的多维。

2、 tensorflow基础

实际上编写tensorflow可以总结为两步.

(1)组装一个graph;

(2)使用session去执行graph中的operation。

2.1、概念说明

下面是 graph , session , operation , tensor 四个概念的简介。

Tensor:类型化的多维数组,图的边;

Operation:执行计算的单元,图的节点;

Graph:一张有边与点的图,其表示了需要进行计算的任务;

Session:称之为会话的上下文,用于执行图。

2.2、一个例子:

import tensorflowas tf

import numpyas np

#tensorflow中大部分数据是float32

# create real data 用numpy生成训练数据

x_data= np.random.rand(100).astype(np.float32)

y_data= x_data* 0.1 + 0.3

### create tensorflow structure start! ###

# 定义变量 用tf.Variable来定义变量w和b

Weights= tf.Variable(tf.random_uniform([1], -1.0, 1.0))

biases= tf.Variable(tf.zeros([1]))

# 定义如何计算预测值

y= Weights* x_data+ biases

# 损失函数 平方损失函数

loss= tf.reduce_mean(tf.square(y- y_data))

# 梯度下降优化器,定义learning rate  optimizer = 优化器

optimizer= tf.train.GradientDescentOptimizer(0.5)

# 训练目标是损失最小化

train= optimizer.minimize(loss)

# 初始化变量, 即初始化weights和biases

init= tf.global_variables_initializer()

# 创建session,进行参数初始化

sess= tf.Session()

sess.run(init)

# 开始训练200步, 每20步输出一下两个参数

for stepin range(201):

    sess.run(train)

if step% 20 == 0:

        print(step, sess.run(Weights), sess.run(biases))

### create tensorflow structure end ###

在上面的例子中,我们想要预测的方程式y=0.1*x + 0.3,给定训练样本,通过梯度下降法来预测参数W和偏置b,我们使用numpy生成了我们的训练数据:

x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3

随后,我们使用tf.Variable定义了我们的变量Weights和biases(以下简称w和b),Weights通过一个均匀分布随机产生,而bias则设置为0,同时二者的形状均为1维,即就是一个数:

Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zeros([1]))

好了,有了变量,我们想要学习w和b,只需要用训练数据x来得到预测值,最小化预测值和实际值的差距就好,所以,我们定义了损失函数为平方损失函数,并通过0.5学习率的梯度下降法来进行参数调整:

#如何计算预测值

y = Weights * x_data + biases# loss functionloss = tf.reduce_mean(tf.square(y-y_data))

#梯度下降优化器,定义learning rate

optimizer = tf.train.GradientDescentOptimizer(0.5)

#训练目标是loss最小化

train = optimizer.minimize(loss)

在tf中定义的变量都需要经过初始化的操作,所以我们定义了一个初始化变量的操作:

#初始化变量,即初始化 Weights 和 biases

init = tf.global_variables_initializer()

接下来我们就可以开始训练了,训练必须创建一个session,通过run方法对指定的节点进行训练,这里一定要注意先要对参数进行初始化,否则后面是无法开始训练的。想要观察训练过程中的参数变化的话,也需要通过run方法:


# 创建session,进行参数初始化 # 开始训练200步, 每20步输出一下两个参数 for step in range(201): sess.run(train) if step% 20 == 0: print(step, sess.run(Weights), sess.run(biases))

这里我们直接run的是train这一步,想要运行这一步,必须先得到optimizier和loss,想要得到loss就要得到预测值....依次往前推,所以run(train)实际上就是对整个tensor流图的训练。

最后贴出来看一下输出结果:

0 [-0.05120224] [ 0.5192185]
20 [ 0.04687011] [ 0.32806551]
40 [ 0.08647783] [ 0.307143]
60 [ 0.09655845] [ 0.30181798]
80 [ 0.09912409] [ 0.30046269]
100 [ 0.09977707] [ 0.30011776]
120 [ 0.09994329] [ 0.30002996]
140 [ 0.09998558] [ 0.30000764]
160 [ 0.09999632] [ 0.30000195]
180 [ 0.09999906] [ 0.30000052]
200 [ 0.09999976] [ 0.30000013]

2.3、数据结构

Tensorflow的数据结构有着rank,shape,data types的概念,下面来分别讲解。

(1)rank

Rank一般是指数据的维度,其与线性代数中的rank不是一个概念。

例如我们所说的标量(Scalar):

s = 8,维数为 0,所以它的 rank 为 0。

例如矢量(Vector):

v = [1, 2, 3],rank 为 1。

例如矩阵(Matrix):

一个二维矩阵 rank 为 2

又例如 rank 为 3 的 tensor:

t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]],以此类推。

(2)shape

tensorflow 用 3 种方式描述一个 tensor 的维数:

rank, shape(shape指tensor每个维度数据的个数), 以及 dimension number (维数)

所以 shape 和 rank 的意思的一样的,只是表达的形式不同。

shape 写成只包含整数的 list 或者 tuple 形式,例如 [1, 4, 2]

(3)datatype

tensor 的数据结构除了 维数(dimensionality),还有 数据类型(data type)。

例如 32位浮点数(32 bits floating point) 等等,可以从下面的链接中查看完整的:

https://www.tensorflow.org/programmers_guide/dims_types#data_types

3、 Variables

(1)介绍

当训练模型时,需要使用Variables保存与更新参数。Variables会保存在内存当中,所有tensor一旦拥有Variables的指向就不会在session中丢失。其必须明确的初始化而且可以通过Saver保存到磁盘上。Variables可以通过Variables初始化。

weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35),name="weights")
biases = tf.Variable(tf.zeros([200]), name="biases")

其中,tf.random_normal是随机生成一个正态分布的tensor,其shape是第一个参数,stddev是其标准差。tf.zeros是生成一个全零的tensor。之后将这个tensor的值赋值给Variable。

(2)初始化

实际在其初始化过程中做了很多的操作,比如初始化空间,赋初值(等价于tf.assign),并把Variable添加到graph中等操作。注意在计算前需要初始化所有的Variable。一般会在定义graph时定义global_variables_initializer,其会在session运算时初始化所有变量。

直接调用global_variables_initializer会初始化所有的Variable,如果仅想初始化部分Variable可以调用tf.variables_initializer。

Init_ab = tf.variables_initializer([a,b],name=”init_ab”)

Variables可以通过eval显示其值,也可以通过assign进行赋值。Variables支持很多数学运算,具体可以参照官方文档

(3)Variables与constant的区别

值得注意的是Variables与constant的区别。Constant一般是常量,可以被赋值给Variables,constant保存在graph中,如果graph重复载入那么constant也会重复载入,其非常浪费资源,如非必要尽量不使用其保存大量数据。而Variables在每个session中都是单独保存的,甚至可以单独存在一个参数服务器上。可以通过代码观察到constant实际是保存在graph中。

(4)命名

另外一个值得注意的地方是尽量每一个变量都明确的命名,这样易于管理命令空间,而且在导入模型的时候不会造成不同模型之间的命名冲突,这样就可以在一张graph中容纳很多个模型。

4、 placeholders与feed_dict

当我们定义一张graph时,有时候并不知道需要计算的值,比如模型的输入数据,其只有在训练与预测时才会有值。这时就需要placeholder(用占位符表示)与feed_dict的帮助。占位符并没有初始值,它只会分配必要的内存。在会话中,占位符可以使用 feed_dict 馈送数据。

feed_dict是一个字典,在字典中需要给出每一个用到的占位符的取值。(sess.run使用的时候要给出前面的占位符的取值。)

定义一个placeholder,可以使用tf.placeholder(dtype,shape=None,name=None)函数。

foo = tf.placeholder(tf.int32,shape=[1],name='foo')
bar = tf.constant(2,name='bar')
result = foo + bar
with tf.Session() as sess:
print(sess.run(result))

在上面的代码中,会抛出错误(InvalidArgumentError),因为计算result需要foo的具体值,而在代码中并没有给出。这时候需要将实际值赋给foo。最后一行修改如下(其中最后的dict就是一个feed_dict,一般会使用python读入一些值后传入,当使用minbatch的情况下,每次输入的值都不同):

print(sess.run(result,{foo:[3]}))

TensorFlow(1)-基础知识点总结的更多相关文章

  1. fastclick 源码注解及一些基础知识点

    在移动端,网页上的点击穿透问题导致了非常糟糕的用户体验.那么该如何解决这个问题呢? 问题产生的原因 移动端浏览器的点击事件存在300ms的延迟执行,这个延迟是由于移动端需要通过在这个时间段用户是否两次 ...

  2. .NET基础知识点

    .NET基础知识点   l  .Net平台  .Net FrameWork框架   l  .Net FrameWork框架提供了一个稳定的运行环境,:来保障我们.Net平台正常的运转   l  两种交 ...

  3. JavaScript 开发者经常忽略或误用的七个基础知识点(转)

    JavaScript 本身可以算是一门简单的语言,但我们也不断用智慧和灵活的模式来改进它.昨天我们将这些模式应用到了 JavaScript 框架中,今天这些框架又驱动了我们的 Web 应用程序.很多新 ...

  4. JavaScript 开发者经常忽略或误用的七个基础知识点

    JavaScript 本身可以算是一门简单的语言,但我们也不断用智慧和灵活的模式来改进它.昨天我们将这些模式应用到了 JavaScript 框架中,今天这些框架又驱动了我们的 Web 应用程序.很多新 ...

  5. JavaScript开发者常忽略或误用的七个基础知识点

    JavaScript 本身可以算是一门简单的语言,但我们也不断用智慧和灵活的模式来改进它.昨天我们将这些模式应用到了 JavaScript 框架中,今天这些框架又驱动了我们的 Web 应用程序.很多新 ...

  6. JavaScript语言基础知识点图示(转)

    一位牛人归纳的JavaScript 语言基础知识点图示. 1.JavaScript 数据类型 2.JavaScript 变量 3.Javascript 运算符 4.JavaScript 数组 5.Ja ...

  7. JavaScript 语言基础知识点总结

    网上找到的一份JavaScript 语言基础知识点总结,还不错,挺全面的. (来自:http://t.cn/zjbXMmi @刘巍峰 分享 )  

  8. c语言学习之基础知识点介绍(三):scanf函数

    本节继续介绍c语言的基础知识点. scanf函数:用来接收用户输入的数据. 语法:scanf("格式化控制符",地址列表); 取地址要用到取地址符:&(shift+7) 例 ...

  9. c语言学习之基础知识点介绍(二):格式化控制符和变量的补充

    上节简单介绍了c语言中的一些基础知识点,本节将对之前介绍的不够详细的知识点进行补充. 格式化控制符的消息介绍: %d的其他控制符: 1.%md:m代表这个整数位占用多少位,m是一个整数.实际数字不足的 ...

  10. (转)JavaScript 开发者经常忽略或误用的七个基础知识点

    英文原文:7 JavaScript Basics Many Developers Aren't Using (Properly) JavaScript 本身可以算是一门简单的语言,但我们也不断用智慧和 ...

随机推荐

  1. Elasticsearch ML

    Elastic公司在收购了Prelert半年之后,终于在Elasticsearch 5中推出了Machine Learning功能.Prelert本身就擅长做时序性数据的异常检测,从这点上讲也比较契合 ...

  2. C++实现半透明按钮控件(PNG,GDI+)

    http://blog.csdn.net/witch_soya/article/details/6889904

  3. Oracle expdp/impdp 使用示例

    1. 创建目录 使用数据泵之前,需要创建一个存放文件的目录. 这个目录要写入Oracle的数据字典中才能识别. (1)先查看一下已经存在的目录: SQL> col owner format a5 ...

  4. java关键字-final

    final特点: 1:这个关键字是一个修饰符,可以修饰类,方法,变量. 2:被final修饰的类是一个最终类,不可以被继承. 3:被final修饰的方法是一个最终方法,不可以被覆盖. 4:被final ...

  5. JVM检测&工具

    前几篇篇文章介绍了介绍了JVM的参数设置并给出了一些生产环境的JVM参数配置参考方案.正如之前文章中提到的JVM参数的设置需要根据应用的特性来进行设置,每个参数的设置都需要对JVM进行长时间的监测,并 ...

  6. Web项目性能测试结果分析

    1.测试结果分析 LoadRunner性能测试结果分析是个复杂的过程,通常可以从结果摘要.并发数.平均事务响应时间.每秒点击数.业务成功率.系统资源.网页细分图.Web服务器资源.数据库服务器资源等几 ...

  7. 06、MySQL—列类型

    1.整数类型 I.有符号整型 (1) Tinyint:单字节整形,系统采用一个字节来保存的整形:一个字节 = 8位,最大能表示的数值是0-255. (2) Smallint:双字节整形,系统采用两个字 ...

  8. Java多线程学习(吐血超详细总结)

    Java多线程学习(吐血超详细总结) 林炳文Evankaka原创作品.转载请注明出处http://blog.csdn.net/evankaka 写在前面的话:此文只能说是java多线程的一个入门,其实 ...

  9. 《收获,不止SQL优化》读书笔记

    整体性能分析 AWR.ASH.ADDM.AWRDD 整体分析调优工具 AWR:关注数据库的整体性能的报告: ASH:数据库中的等待事件与哪些SQL具体对应的报告: ADDM:oracle给出的一些建议 ...

  10. 记2017青岛ICPC

    2017青岛ICPC 11月4日 早上很早到达了青岛,然后去报道,走了好久的校园,穿的很少冷得瑟瑟发抖.中午教练请吃大餐,吃完饭就去热身赛了. 开幕式的时候,教练作为教练代表讲话,感觉周围的队伍看过来 ...