vgg16是牛津大学视觉几何组(Oxford Visual Geometry Group)2014年提出的一个模型. vgg模型也得名于此.

2014年,vgg16拿了Imagenet Large Scale Visual Recognition Challenge 2014 (ILSVRC2014)

比赛的冠军.

论文连接:https://arxiv.org/abs/1409.1556

http://www.robots.ox.ac.uk/~vgg/research/very_deep/牛津大学视觉研究小组在这里放出了他们在ImageNet比赛训练得到的模型文件.

网上有很多vgg16的实现,下面

vgg的模型结构如下:

每一层的卷积核的大小都是3*3.

现在的keras里已经集成了很多模型,具体可以参考keras的文档.

https://keras.io/applications/#models-for-image-classification-with-weights-trained-on-imagenet

下面是keras_applications/vgg16.py的实现.比tensorflow的代码更易于理解.

"""VGG16 model for Keras.

# Reference

- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
https://arxiv.org/abs/1409.1556) (ICLR 2015) """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import os from . import get_submodules_from_kwargs
from . import imagenet_utils
from .imagenet_utils import decode_predictions
from .imagenet_utils import _obtain_input_shape preprocess_input = imagenet_utils.preprocess_input WEIGHTS_PATH = ('https://github.com/fchollet/deep-learning-models/'
'releases/download/v0.1/'
'vgg16_weights_tf_dim_ordering_tf_kernels.h5')
WEIGHTS_PATH_NO_TOP = ('https://github.com/fchollet/deep-learning-models/'
'releases/download/v0.1/'
'vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5') def VGG16(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
**kwargs):
"""Instantiates the VGG16 architecture. Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`. # Arguments
include_top: whether to include the 3 fully-connected
layers at the top of the network.
weights: one of `None` (random initialization),
'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded.
input_tensor: optional Keras tensor
(i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)`
(with `channels_last` data format)
or `(3, 224, 224)` (with `channels_first` data format).
It should have exactly 3 input channels,
and width and height should be no smaller than 32.
E.g. `(200, 200, 3)` would be one valid value.
pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the
last convolutional block.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a 2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified. # Returns
A Keras model instance. # Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
"""
backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs) if not (weights in {'imagenet', None} or os.path.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
' as true, `classes` should be 1000')
# Determine proper input shape
input_shape = _obtain_input_shape(input_shape,
default_size=224,
min_size=32,
data_format=backend.image_data_format(),
require_flatten=include_top,
weights=weights) if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
if not backend.is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
# Block 1
x = layers.Conv2D(64, (3, 3),
activation='relu',
padding='same',
name='block1_conv1')(img_input)
x = layers.Conv2D(64, (3, 3),
activation='relu',
padding='same',
name='block1_conv2')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) # Block 2
x = layers.Conv2D(128, (3, 3),
activation='relu',
padding='same',
name='block2_conv1')(x)
x = layers.Conv2D(128, (3, 3),
activation='relu',
padding='same',
name='block2_conv2')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) # Block 3
x = layers.Conv2D(256, (3, 3),
activation='relu',
padding='same',
name='block3_conv1')(x)
x = layers.Conv2D(256, (3, 3),
activation='relu',
padding='same',
name='block3_conv2')(x)
x = layers.Conv2D(256, (3, 3),
activation='relu',
padding='same',
name='block3_conv3')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) # Block 4
x = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block4_conv1')(x)
x = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block4_conv2')(x)
x = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block4_conv3')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) # Block 5
x = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block5_conv1')(x)
x = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block5_conv2')(x)
x = layers.Conv2D(512, (3, 3),
activation='relu',
padding='same',
name='block5_conv3')(x)
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x) if include_top:
# Classification block
x = layers.Flatten(name='flatten')(x)
x = layers.Dense(4096, activation='relu', name='fc1')(x)
x = layers.Dense(4096, activation='relu', name='fc2')(x)
x = layers.Dense(classes, activation='softmax', name='predictions')(x)
else:
if pooling == 'avg':
x = layers.GlobalAveragePooling2D()(x)
elif pooling == 'max':
x = layers.GlobalMaxPooling2D()(x) # Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = keras_utils.get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = models.Model(inputs, x, name='vgg16') # Load weights.
if weights == 'imagenet':
if include_top:
weights_path = keras_utils.get_file(
'vgg16_weights_tf_dim_ordering_tf_kernels.h5',
WEIGHTS_PATH,
cache_subdir='models',
file_hash='64373286793e3c8b2b4e3219cbf3544b')
else:
weights_path = keras_utils.get_file(
'vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
WEIGHTS_PATH_NO_TOP,
cache_subdir='models',
file_hash='6d6bbae143d832006294945121d1f1fc')
model.load_weights(weights_path)
if backend.backend() == 'theano':
keras_utils.convert_all_kernels_in_model(model)
elif weights is not None:
model.load_weights(weights) return model

可以清楚地看出来,所用的卷积核全部是3*3的.

用keras做预测也很简单,

from keras.applications.vgg16 import VGG16
model = VGG16()
print(model.summary())

上面代码会把权重文件下载到

这里贴一段网上找的代码

from keras.applications.vgg16 import VGG16, preprocess_input, decode_predictions

from keras.preprocessing.image import load_img, img_to_array
import numpy as np
# VGG-16 instance
model = VGG16(weights='imagenet', include_top=True) image = load_img('C:/Pictures/Pictures/test_imgs/golden.jpg', target_size=(224, 224))
image_data = img_to_array(image) # reshape it into the specific format
image_data = image_data.reshape((1,) + image_data.shape)
print(image_data.shape) # prepare the image data for VGG
image_data = preprocess_input(image_data) # using the pre-trained model to predict
prediction = model.predict(image_data) # decode the prediction results
results = decode_predictions(prediction, top=3) print(results)

很简单

  • 加载模型
  • 加载图片,预处理
  • 前向传播
  • 解释输出tensor

 


vgg19和vgg16结构基本一致的,就是多了几个卷积层.

基础分类网络VGG的更多相关文章

  1. TCP/IP协议(一)网络基础知识 网络七层协议

    参考书籍为<图解tcp/ip>-第五版.这篇随笔,主要内容还是TCP/IP所必备的基础知识,包括计算机与网络发展的历史及标准化过程(简述).OSI参考模型.网络概念的本质.网络构建的设备等 ...

  2. Python黑客编程基础3网络数据监听和过滤

    网络数据监听和过滤 课程的实验环境如下: •      操作系统:kali Linux 2.0 •      编程工具:Wing IDE •      Python版本:2.7.9 •      涉及 ...

  3. 黑马程序员:Java基础总结----网络编程

    黑马程序员:Java基础总结 网络编程   ASP.Net+Android+IO开发 . .Net培训 .期待与您交流! 网络编程 网络通讯要素 . IP地址 . 网络中设备的标识 . 不易记忆,可用 ...

  4. 网络编程基础:网络基础之网络协议、socket模块

    操作系统(简称OS)基础: 应用软件不能直接操作硬件,能直接操作硬件的只有操作系统:所以,应用软件可以通过操作系统来间接操作硬件 网络基础之网络协议: 网络通讯原理: 连接两台计算机之间的Intern ...

  5. GO学习-(19) Go语言基础之网络编程

    Go语言基础之网络编程 现在我们几乎每天都在使用互联网,我们前面已经学习了如何编写Go语言程序,但是如何才能让我们的程序通过网络互相通信呢?本章我们就一起来学习下Go语言中的网络编程. 关于网络编程其 ...

  6. python渗透测试入门——基础的网络编程工具

    <Python黑帽子--黑客与渗透测试编程之道学习>这本书是我在学习安全的过程中发现的在我看来十分优秀的一本书,业内也拥有很高的评价,所以在这里将自己的学习内容分享出来. 1.基础的网络编 ...

  7. 转 经典分类网络Googlenet

    转自https://my.oschina.net/u/876354/blog/1637819 2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLe ...

  8. 【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络Vgg

    上周我们讲了经典CNN网络AlexNet对图像分类的效果,2014年,在AlexNet出来的两年后,牛津大学提出了Vgg网络,并在ILSVRC 2014中的classification项目的比赛中取得 ...

  9. 周末班:Python基础之网络编程

    一.楔子 你现在已经学会了写python代码,假如你写了两个python文件a.py和b.py,分别去运行,你就会发现,这两个python的文件分别运行的很好.但是如果这两个程序之间想要传递一个数据, ...

随机推荐

  1. Linux 根分区扩容

    扩容分区之前,首先要保证当前有闲置空间 1. 查看当前现有分区情况 df -lah 可以看出当前根分区只剩 6.4 G 可用 2. 查看当前磁盘情况 fdisk -l 可以看出有 30G的未分配空间 ...

  2. Spark 系列(四)—— RDD常用算子详解

    一.Transformation spark 常用的 Transformation 算子如下表: Transformation 算子 Meaning(含义) map(func) 对原 RDD 中每个元 ...

  3. 统计学习方法—SVM推导

    目录 SVM 1. 定义 1.1 函数间隔和几何间隔 1.2 间隔最大化 2. 线性可分SVM 2.1 对偶问题 2.2 序列最小最优算法(SMO) 3. 线性不可分SVM 3.1 松弛变量 3.2 ...

  4. Linux常用命令之权限管理

    在linux中的每一个文件或目录都包含有访问权限,这些访问权限决定了谁能访问和如何访问这些文件和目录,这也让linux更安全.下面主要讲解下常用的权限命令chgrp,chmod,chown . 1.文 ...

  5. HTML发展历程

    HTML是超文本标记语言的缩写,不同于C或JAVA等编程语言,HTML由标签组成.通过标签可以在网页中插入文字.图片.链接.音频.视频等元素,进而描述网页.和Windows一样,随着技术的发展,HTM ...

  6. Java源码之阻塞队列

    ⑴背景 阻塞队列常用于生产者消费者场景,生产者是向队列里添加元素的线程,消费者是向队列里取出元素的线程.阻塞队列的角色是供生产者存放元素,消费者取出元素的容器. ⑵阻塞队列 阻塞队列是一个支持两个附加 ...

  7. Android 框架揭秘 --读书笔记

    Android 框架揭秘 Insied the Android Framework

  8. ASP.NET Core MVC 之区域(Area)

    区域(Area)是一个 ASP.NET MVC 功能,用于将相关功能组织为一个单独的命名空间(用于路由)和文件结构(用于视图).使用区域通过向控制器和操作添加 一个路由参数(area)来创建用于路由目 ...

  9. Python 命令行之旅 —— 深入 argparse (一)

    作者:HelloGitHub-Prodesire HelloGitHub 的<讲解开源项目>系列,项目地址:https://github.com/HelloGitHub-Team/Arti ...

  10. 在Win10下,python3和python2同时安装并解决pip共存问题

    前提 本文是在Windows64位系统下进行的,32位系统请下载相应版本的安装包,安装方法类似. 在Win10下,python3和python2同时安装并解决pip共存问题解决: 1.下载python ...