Wall
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 34026   Accepted: 11591

Description

Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall
towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources
to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build
the wall. 




Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements. 



The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices
in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to
the castle. 



Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides
of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers
are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Sample Output

1628

Hint

结果四舍五入就可以了

题意:

给出平面内指定多个点,求与它们所围成的区域相距为d的最少线段长度,也就是围成凸包的边长+半径为d的圆的周长~

既然知道了这个,就差写代码AC咯~

说到凸包,我也是第一次接触,只是看了一下凸包的思想,然后直接做,没想到考虑不周,错了好多好多好多次!

下次记得带模板~

思想:

  • 先对这N个点进行排序,排序的依据有两种,一种是按照纵坐标优先,横坐标次之由小到大排序,另一种是极角排序,它需要找到平面内最左下角的点,然后以该点为起点,连接其他点,由其两点之间与x轴夹角,从下到上排序
  • 排序完成之后,我们需要一个栈
  • 逆时针或者顺时针每次检测三个点,用叉积判断这三个点所连接的两个线段是左转还是右转,若左转,入栈,若右转,说明此时为凹。则让第二个点出栈,第三个点入栈,别忘了每一次检测都要向后扫描
  • 检测完之后栈中便是凸包各个顶点的坐标。
  • 按照顺序求每两点距离,然后相加
  • 计算圆的周长
  • AC


AC代码:

#include<iostream>
#include<algorithm>
#include<cmath>
#include<stdio.h>
using namespace std;
#define PI acos(-1)
struct point
{
    double x;
    double y;
    double distance(const point &b)const    //计算距离
    {
        return hypot(x-b.x,y-b.y);
    }
} ;
point a[1005];
struct stack
{
    point data[1005];
    int top;
} st;
point minn;
int crossLeft(point p0,point p1,point p2)   //判读左转还是右转
{
    return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);
}
bool cmp(point p1,point p2)
{
    int tmp=crossLeft(a[0],p1,p2);
    if(tmp>0) return true;
    else if(tmp==0&&a[0].distance(p1)<a[0].distance(p2))return true;
    else return false;
}
void init(int n)
{
    int i,k=0;
    point p;
    cin>>a[0].x>>a[0].y;
    p.x=a[0].x;
    p.y=a[0].y;
    for(i=1; i<n; i++)
    {
        cin>>a[i].x>>a[i].y;
        if( (p.y>a[i].y) || ((p.y==a[i].y)&&(p.x>a[i].x)) )
        {
            p.x=a[i].x;
            p.y=a[i].y;
            k=i;
        }
    }
    a[k]=a[0];
    a[0]=p;
    sort(a+1,a+n,cmp);
}
int main()
{
    int N,L;
    cout.sync_with_stdio(false);        //解除同步
    while(cin>>N>>L)
    {
        init(N);
        for(int i=0; i<2; i++)
            st.data[i]=a[i];            //前两个点入栈
        st.top=1;
        for(int i=2; i<N; i++)
        {
            st.data[++st.top]=a[i];     //新点进栈
            while(st.top>1&&crossLeft(st.data[st.top-2],st.data[st.top-1],st.data[st.top])<=0)  //向后遍历判断是否存在凹的区域
                st.data[st.top-1]=st.data[st.top],st.top--;                                     //存在,出栈一个点
        }
        double l=0.0;
        for(int i=0; i<st.top; i++)
            l+=st.data[i].distance(st.data[i+1]);           //求长度
        l+=st.data[st.top].distance(st.data[0])+2*PI*L;     //圆的周长
        printf("%d\n",(int)(l+0.5));
    }
}

POJ 1113:Wall的更多相关文章

  1. POJ 1113:Wall(凸包)

    http://poj.org/problem?id=1113 Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 346 ...

  2. 【POJ 1113】Wall

    http://poj.org/problem?id=1113 夏令营讲课时的求凸包例题,据说是PKUSC2015的一道题 我WA两次错在四舍五入上了(=゚ω゚)ノ #include<cmath& ...

  3. POJ 1113 Wall 凸包 裸

    LINK 题意:给出一个简单几何,问与其边距离长为L的几何图形的周长. 思路:求一个几何图形的最小外接几何,就是求凸包,距离为L相当于再多增加上一个圆的周长(因为只有四个角).看了黑书使用graham ...

  4. poj 1113 Wall 凸包的应用

    题目链接:poj 1113   单调链凸包小结 题解:本题用到的依然是凸包来求,最短的周长,只是多加了一个圆的长度而已,套用模板,就能搞定: AC代码: #include<iostream> ...

  5. 计算几何--求凸包模板--Graham算法--poj 1113

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28157   Accepted: 9401 Description ...

  6. poj 1113 凸包周长

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 33888   Accepted: 11544 Descriptio ...

  7. POJ 3321:Apple Tree + HDU 3887:Counting Offspring(DFS序+树状数组)

    http://poj.org/problem?id=3321 http://acm.hdu.edu.cn/showproblem.php?pid=3887 POJ 3321: 题意:给出一棵根节点为1 ...

  8. POJ 3252:Round Numbers

    POJ 3252:Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10099 Accepted: 36 ...

  9. 【九度OJ】题目1113:二叉树 解题报告

    [九度OJ]题目1113:二叉树 解题报告 标签(空格分隔): 九度OJ http://ac.jobdu.com/problem.php?pid=1113 题目描述: 如上所示,由正整数1,2,3-- ...

随机推荐

  1. C++类内存分布

    http://www.cnblogs.com/jerry19880126/p/3616999.html#undefined 书上类继承相关章节到这里就结束了,这里不妨说下C++内存分布结构,我们来看看 ...

  2. jsp&Sevelet基础详解

    1.用scriptlet标签在jsp中嵌入java代码: (1).<%!...%>可以在里面定义全局变量,方法,类,一般写在<head>内 (2).<%%>定义的是 ...

  3. Shell 之外 试试不操作 shell 来实现同样的效果

    执行程序时发生了什么当你双击桌面上的终端程序图标时,就会打开一个载入shell的程序. 你键入的命令不会直接在内核执行,而是先和 shell 进行交互.Command (eg. `ls -l')↓Te ...

  4. java中hashCode方法与equals方法的用法总结

    首先,想要明白hashCode的作用,必须要先知道Java中的集合. 总的来说,Java中的集合(Collection)有两类,一类是List,再有一类是Set. 前者集合内的元素是有序的,元素可以重 ...

  5. Java 内存区域划分

            JVM的内存区域划分 学过C语言的朋友都知道C编译器在划分内存区域的时候经常将管理的区域划分为数据段和代码段,数据段包括堆.栈以及静态数据区.那么在Java语言当中,内存又是如何划分的 ...

  6. 蓝牙--对象交换协议(OBEX)

    1.OBEX协议概述 OBEX是IrOBEX的简称,IrOBEX协议是红外数据协会IrDA开发的用于红外数据链路上数据对象交换的会话层协议.OBEX是一种紧凑高效的二进制协议,功能类似于HTTP协议. ...

  7. 使用apache.lang包安全简洁地操作Java时间

    引言 最近偶遇apache开发的工作java工具包,一使用,就发现自己爱上它了.不多说了,下面介绍org.apache.commons.lang3.time包中处理java程序员为之头疼的时间的类. ...

  8. 关于对于IT我自己的见解以及我踩过的坑(需要认真读文章才能理解我所遇到的坑.)

    终于开始下决心写下这篇文章了. 就在写这篇总结文章的前天还是今天,我度过了我的17岁生日,正式踏入了已成年人的路程.生日那天我在想今夜必定要做件比较有意义的事,于是乎我想到两件比较可以证明自己是成年人 ...

  9. C语言 ---- 循环分支 iOS学习-----细碎知识点总结

    #import <Foundation/Foundation.h>  // #import是OC种的导入头文件或者是系统框架的指令 // 定义了一个Season枚举类型enum Seaso ...

  10. wpa supplicant 保存 wifi 设置

    wpa suppliclant使用wpa gui连接wifi后,下次开机的时,不能保存,需要从新手动进行连接. 自动保存方法: 配置文件/etc/wpa_supplicant.conf 添加 upda ...