@tags: caffe blob

blob是caffe中的基本数据结构,简单理解就是一个“4维数组”。但是,这个4维数组有什么意义?

BTW,TensorFlow这款google出的框架,带出了tensor(张量)的概念。虽然是数学概念,个人还是倾向于简单理解为“多维数组”,那么放在这里,caffe的blob就相当于一个特殊的tensor了。而矩阵就是二维的张量。

anyway,看看blob的4个维度都代表什么:

num: 图像数量
channel:通道数量
width:图像宽度
height:图像高度

caffe中默认使用的SGD随机梯度下降,其实是mini-batch SGD

每个batch,就是一堆图片。这一个batch的图片,就存储在一个blob中。

当然,blob并不是这么受限的、专门给batch内的图片做存储用的。实际上,参数、梯度,也可以用blob存储的。只要是caffe的网络中传递的数据,都可以用blob存储。

而且,blob实际上也并不一定是4维的。它在实现上其实就是1维的指针,而我们作为用户感受到的“多个维度”是通过shape来操作的。

========= 2016-10-26 20:32:45更新 ==========

在用faster-rcnn训练的时候使用了ZF网络,对于ZF网络中的卷积、池化的计算,这里想自己算一算,结果发现对于卷积网的计算细节还是不太懂,于是找到这篇博客

一开始对于博客中的推导,1、2=>3这里不理解:

1、首先,输入图片大小是 2242243(这个3是三个通道,也就是RGB三种)

2、然后第一层的卷积核维度是 773*96 (所以大家要认识到卷积核都是4维的,在caffe的矩阵计算中都是这么实现的);

3、所以conv1得到的结果是11011096 (这个110来自于 (224-7+pad)/2 +1 ,这个pad是我们常说的填充,也就是在图片的周围补充像素,这样做的目的是为了能够整除,除以2是因为2是图中的stride, 这个计算方法在上面建议的文档中有说明与推导的);

第一感觉是,conv1得到的应该是110x110x3x96的结果,而不是110x110x96。后来问了别人,再看看书,发现自己忽略了一个细节,就是卷积之后有一个∑和sigmoid的两个过程,前者是累加,后者是映射到0-1之间。具体到faster-rcnn,∑对应的就是:各个通道上对应位置做累加;而激活函数使用的应该是ReLU吧。anyway,这里的累加和激活函数处理后,通道数就变成了一个;也就是,对于一个滤波器,滑窗滤波+累加、激活函数后,得到的一个feature map。

再具体点说,这里的滤波器(卷积核),是3维的,(Width,Height,Channel)这样;我们用它在一个feature map上按滑窗方式做卷积,其实是所有Channel上同时做sliding window的操作;每个sliding windows位置上,所有通道卷积的结果累加起来,再送给激活函数ReLU处理,就得到结果feature map中的一个像素的值。

值得注意的是,滤波器的通道数量,和要处理的feature map的通道数量,其实可以不一样的,可以比feature map维度少一点,这相当于可以自行指定要选取feature map中的某些channel做卷积操作,相当于有一个采样的过程,甚至可以仅仅使用一个channel的卷积结果。具体例子,可以参考《人工智能(第三版)》(王万良著)里面的例子,结合例子中算出的“要学习的参数数量”来理解。

总结

  1. 在caffe中,Blob类型是(Width,Height,Channel,Number)四元组,表示宽度、高度、通道数量、数量(或者叫种类)

  2. 图像本身、feature map、滤波器(kernel),都可以看做是Blob类型的具体例子

  3. 一个“层”,可以理解为执行相应操作后,得到的结果。比如,执行卷积操作,得到卷积层;执行全连接操作,得到全连接层。通常把池化层归属到卷积层里面。池化就是下采样的意思,有最大池化和平均池化等。

  4. 对于一个卷积层,其处理的“输入”是多个feature maps,也就是一个Blob实例:(H1,W1,C1,N1),比如(224,224,3,5),表示5张图像(这里的5,可以认为是一个minibatch的batch size,即图片数量)

    卷积操作需要卷积核的参与,卷积核也是Blob的实例:(H2,W2,C2,N2),比如(7,7,3,96),表示有96个卷积核,每个卷积核是一个3维的结构,是7x7的截面、3个通道的卷积核

    卷积层的输出也是若干feature maps,也是一个Blob实例:(H3,W3,C3,N3),是根据输入的feature maps和指定的卷积核计算出来的。按上面的例子,得到feature map的Blob描述为(110,110,96,5),表示有5个feature maps,每个feature map是110x110x96大小。

    通常可以这样理解:卷积核的个数,作为结果feature maps中的通道数量。

参考

http://blog.csdn.net/u014114990/article/details/51125776

=========== 2016-10-27 21:06:24 再次update ===========

其实上面的理解简直是过于琐碎、过于不到位。其实CNN的数据流动,包括前向传播和反向传播,都是blob经过一层,得到一个新的blob,这个层通常是卷积操作。这个卷积是3D卷积,是空间的卷积!简言之,每次把空间的一个长方体内部的元素值累加,即得到结果feature map中的一个像素值(通常是滑窗操作,所以说是得到一个像素值):

feature map --(3D卷积)--> 新的feature map

【caffe】基本数据结构blob的更多相关文章

  1. 【caffe Blob】caffe中与Blob相关的代码注释、使用举例

    首先,Blob使用的小例子(通过运行结果即可知道相关功能): #include <vector> #include <caffe/blob.hpp> #include < ...

  2. (Caffe)基本类Blob,Layer,Net(一)

    本文地址:http://blog.csdn.net/mounty_fsc/article/details/51085654 Caffe中,Blob.Layer,Net,Solver是最为核心的类,下面 ...

  3. caffe源代码分析--Blob类代码研究

    作者:linger 转自须注明转自:http://blog.csdn.net/lingerlanlan/article/details/24379689 数据成员 shared_ptr<Sync ...

  4. 【撸码caffe 二】 blob.hpp

    Blob类是caffe中对处理和传递的实际数据的封装,是caffe中基本的数据存储单元,包括前向传播中的图像数据,反向传播中的梯度数据以及网络层间的中间数据变量(包括权值,偏置等),训练模型的参数等等 ...

  5. Caffe源码-Blob类

    Blob类简介 Blob是caffe中的数据传递的一个基本类,网络各层的输入输出数据以及网络层中的可学习参数(learnable parameters,如卷积层的权重和偏置参数)都是Blob类型.Bl ...

  6. caffe中的Blob块

    首先说明:Blob定义了一个类模板. 让我们看一下Blob的头文件里有什么哈: 定义了一个全局变量: const ; 看看它的构造函数: Blob() : data_(), diff_(), coun ...

  7. faster-rcnn原理讲解

    文章转自:https://zhuanlan.zhihu.com/p/31426458 经过R-CNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RC ...

  8. faster rcnn相关内容

    转自: https://zhuanlan.zhihu.com/p/31426458 faster rcnn的基本结构 Faster RCNN其实可以分为4个主要内容: Conv layers.作为一种 ...

  9. Faster-rcnn实现目标检测

      Faster-rcnn实现目标检测 前言:本文浅谈目标检测的概念,发展过程以及RCNN系列的发展.为了实现基于Faster-RCNN算法的目标检测,初步了解了RCNN和Fast-RCNN实现目标检 ...

随机推荐

  1. 在实例中说明java的类变量,成员变量和局部变量

    java中一般有三种变量:类变量,成员变量和局部变量.类变量 1.下面先看类变量,看下面这个例子 public class Demo6{ public String name; public int ...

  2. XAMPP部署

    1,直接从官网上下载,然后安装即可 2,出现的问题: a,启动Apache服务器的时候,出现打开端口失败,原因80号端口已被占用,解决方案,更改config文件,将端口设置为8090 b,给phpmy ...

  3. Resample the mask

    我们所用功能像和mask的size不同时,我们首先要对mask进行resample,令其和功能像的size相同才可以. 根据严超赣老师的回复,有三种方法:http://restfmri.net/for ...

  4. java多线程系类:基础篇:01基本概念:

    这个系类的内容全部来源于http://www.cnblogs.com/skywang12345/p/3479024.html.特别在此声明!!! 本来想直接看那位作家的博客的,但还是复制过来. 多线程 ...

  5. Spring Security笔记:使用BCrypt算法加密存储登录密码

    在前一节使用数据库进行用户认证(form login using database)里,我们学习了如何把“登录帐号.密码”存储在db中,但是密码都是明文存储的,显然不太讲究.这一节将学习如何使用spr ...

  6. 浅谈设计模式--组合模式(Composite Pattern)

    组合模式(Composite Pattern) 组合模式,有时候又叫部分-整体结构(part-whole hierarchy),使得用户对单个对象和对一组对象的使用具有一致性.简单来说,就是可以像使用 ...

  7. Android -- View移动的六种方法

    layout() 如果你将滑动后的目标位置的坐标传递给layout(),这样子就会把view的位置给重新布置了一下,在视觉上就是view的一个滑动的效果. public class DragView ...

  8. EMV内核使用中的常见问题

    EMV内核在使用上会由于调用不当引起的许多问题,本文旨在基于内核LOG(也就是与IC卡交互的指令LOG)的基础上,对一些常见问题作初步的分析与解答,方便不熟悉EMV规范的同学参考. 本文的前提是你已经 ...

  9. Oracle 常见错误排查

    1. java.sql.SQLException: ORA-01000: 超出打开游标的最大数 step 1: 查看数据库当前的游标数配置slqplus:show parameter open_cur ...

  10. 移动端打印调试插件 - debug.js 介绍

    前文中我们学习过,用 Fiddler 作为代理可以在移动端打开本地的页面进行查看(如何用 fiddler 代理调试本地手机页面),但是对于 js 的调试却无能为力(需要借助其他调试手段,比如 UC浏览 ...