Sol

数学.

跟圆上的整点一样...TA写了个积性函数的算法...以后再说吧...

\(x^2+3y^2=r^2\)

\(3y^2=r^2-x^2\)

\(3y^2=(r-x)(r+x)\)

\(y^2=\frac{1}{3}(r-x)(r+x)\)

\(d=(r-x)(r+x)\)

\(r-x=3du^2,r+x=dv^2\) 这里 \(r-x\) 和 \(r+x\) 并没有什么区别.

\(2r=d(3u^2+v^2)\)

枚举 \(d\) 和 \(u\)

感觉复杂度是\(O(n^{\frac{3}{4}})\)

但是可以跑最大数据的说.

Code

/**************************************************************
Problem: 4544
User: BeiYu
Language: C++
Result: Accepted
Time:8568 ms
Memory:1300 kb
****************************************************************/ #include<cstdio>
#include<cmath>
#include<algorithm>
#include<vector>
#include<utility>
#include<iostream>
using namespace std; typedef long long LL;
#define debug(a) cout<<#a<<"="<<a<<" "
#define mpr(a,b) make_pair(a,b) LL T,r,n,ans; inline LL in(LL x=0,char ch=getchar()){ while(ch>'9'||ch<'0') ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x; } vector<pair<LL,LL> > p; LL calc(LL d){
LL res=0,m=n/d;
// cout<<"*************"<<endl;
// debug(m),debug(d);cout<<endl;
for(LL u=1,v;u*u*3<=m;u++){
v=sqrt(m-3*u*u+0.5);
// debug(u),debug(v),debug(3*v*v+u*u),cout<<endl;
// if(u>v) break;
if(v*v+u*u*3==m&&__gcd(v*v,u*u*3)==1) res++;
// cout<<"get!",debug(d*u*u*3),debug(d*v*v),debug(d*u*u*3+d*v*v)<<endl;
// p.push_back(mpr(d*u*u*3,d*v*v));
}return res;
}
int main(){
// freopen("in.in","r",stdin);
for(T=in();T--;){
r=in(),n=r<<1,ans=0;
for(LL d=1;d*d<=n;d++) if(n%d==0){
if(d*d==n) ans+=calc(d);
else ans+=calc(d)+calc(n/d);
}
cout<<ans*4+2<<endl;
// sort(p.begin(),p.end());
// for(int i=0;i<p.size();i++) cout<<p[i].first<<" "<<p[i].second<<endl;
}
return 0;
}

  

BZOJ 4544: 椭圆上的整点的更多相关文章

  1. BZOJ 1041 圆上的整点

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1041 题意:求圆x^2+y^2=r^2上的整点. 思路:由于对称性,我们只需要计算第一象 ...

  2. [BZOJ]1045 圆上的整点(HAOI2008)

    数学题第二弹! Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 一个正整数r. Output 整点个数. Sample Input 4 ...

  3. bzoj 1041 圆上的整点 分类: Brush Mode 2014-11-11 20:15 80人阅读 评论(0) 收藏

    这里先只考虑x,y都大于0的情况 如果x^2+y^2=r^2,则(r-x)(r+x)=y*y 令d=gcd(r-x,r+x),r-x=d*u^2,r+x=d*v^2,显然有gcd(u,v)=1且u&l ...

  4. BZOJ 1041 圆上的整点 数学

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1041 题目大意:求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整 ...

  5. BZOJ4544 椭圆上的整点(数论)

    https://www.cnblogs.com/Gloid/p/9538413.html 基本思路没有太大差别.得到2n=d(a2+3b2),其中d=gcd(n-x,n+x),n-x==a2& ...

  6. bzoj4544 椭圆上的整点

    我会所有推理..... Q1:真的这么暴力的统计答案? Q2:蜜汁统计答案.... Q3:为什么不考虑3在不同的位置的情况

  7. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  8. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  9. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

随机推荐

  1. Ubuntu下apt-get命令详解

    在Ubuntu下,apt-get近乎是最常用的shell命令之一了,因为他是Ubuntu通过新立得安装软件的常用工具命令. 本文列举了常用的APT命令参数: apt-cache search pack ...

  2. JavaScript学习笔记——对象分类

    对象的分类 一.对象的分类 1.内置对象 Global Math 2.本地对象 Array Number String Boolean Function RegExp 3.宿主对象 DOM BOM 二 ...

  3. Visual Studio的调试技巧

    Visual Studio的调试技巧 [原文地址] Debugging Tips with Visual Studio 2010 [原文发表日期] 2010/8/19 10:48 AM 这是我写的关于 ...

  4. Clion cmake 一个简单的 C++ 程序

    CMakeLists.txt cmake_minimum_required(VERSION 3.5) project(dll) set(CMAKE_CXX_FLAGS "${CMAKE_CX ...

  5. sublime中安装css 格式化插件

    HTML-CSS-JS Prettify解决问题 今天发现此插件依赖于nodejs,如果本机没有安装nodejs,会一直提示你安装,解决方法很简单,直接brew install nodejs即可 看看 ...

  6. mssql禁用启用主键约束

    EXEC sp_msforeachtable 'ALTER TABLE ? NOCHECK CONSTRAINT ALL'  --禁用 EXEC sp_msforeachtable 'ALTER TA ...

  7. Spring--Spring容器

    在使用Spring所提供的各种丰富而神奇的功能之前,必须要在Spring IoC容器中装配好Bean,并建立Bean和Bean之间的关联关系. Spring提供了多种配置方式来实现Bean的装配.但在 ...

  8. python 默认全局变量

    python 内置默认全局变量print (vars()) __doc__ #py文件头部的注释 '''我是一个注释例子''' print (vars()) __file__ #当前文件路劲__pac ...

  9. thinkphp单入口和多入口的访问方法

    完全是参考thinkphp的官网资料 现在, 基本上都是 用 单入口 的方式来做的! thinkphp可创建多入口和单入口两种模式,本文主要讲解创建方法和两者的区别. TP版本:3.1.3 前端:Ho ...

  10. google-breakpad

    BUG收集系统: 国内可以使用友盟,国外可以使用Crashlytics SDK,或者自己实现使用 google-breakpad,参见下列文章: Crashlytics SDK 部分: http:// ...