作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!

HASH

哈希表(hash table)是从一个集合A到另一个集合B的映射(mapping)。映射是一种对应关系,而且集合A的某个元素只能对应集合B中的一个元素。但反过来,集合B中的一个元素可能对应多个集合A中的元素。如果B中的元素只能对应A中的一个元素,这样的映射被称为一一映射。这样的对应关系在现实生活中很常见,比如:

A  -> B

人 -> 身份证号

日期 -> 星座

上面两个映射中,人 -> 身份证号是一一映射的关系。在哈希表中,上述对应过程称为hashing。A中元素a对应B中元素b,a被称为键值(key),b被称为a的hash值(hash value)。

韦小宝的hash值

映射在数学上相当于一个函数f(x):A->B。比如 f(x) = 3x + 2。哈希表的核心是一个哈希函数(hash function),这个函数规定了集合A中的元素如何对应到集合B中的元素。比如:

A: 三位整数    hash(x) = x % 10    B: 一位整数

104                               4

876                               6

192                               2

上述对应中,哈希函数表示为hash(x) = x % 10。也就是说,给一个三位数,我们取它的最后一位作为该三位数的hash值。

哈希表在计算机科学中应用广泛。比如:

Ethernet中的FCS:参看小喇叭开始广播 (以太网与WiFi协议)

IP协议中的checksum:参看我尽力 (IP协议详解)

git中的hash值:参看版本管理三国志

上述应用中,我们用一个hash值来代表键值。比如在git中,文件内容为键值,并用SHA算法作为hash function,将文件内容对应为固定长度的字符串(hash值)。如果文件内容发生变化,那么所对应的字符串就会发生变化。git通过比较较短的hash值,就可以知道文件内容是否发生变动。

再比如计算机的登陆密码,一般是一串字符。然而,为了安全起见,计算机不会直接保存该字符串,而是保存该字符串的hash值(使用MD5、SHA或者其他算法作为hash函数)。当用户下次登陆的时候,输入密码字符串。如果该密码字符串的hash值与保存的hash值一致,那么就认为用户输入了正确的密码。这样,就算黑客闯入了数据库中的密码记录,他能看到的也只是密码的hash值。上面所使用的hash函数有很好的单向性:很难从hash值去推测键值。因此,黑客无法获知用户的密码。

(之前有报道多家网站用户密码泄露的时间,就是因为这些网站存储明文密码,而不是hash值,见多家网站卷入CSDN泄密事件 明文密码成争议焦点)

注意,hash只要求从A到B的对应为一个映射,它并没有限定该对应关系为一一映射。因此会有这样的可能:两个不同的键值对应同一个hash值。这种情况叫做hash碰撞(hash collision)。比如网络协议中的checksum就可能出现这种状况,即所要校验的内容与原文并不同,但与原文生成的checksum(hash值)相同。再比如,MD5算法常用来计算密码的hash值。已经有实验表明,MD5算法有可能发生碰撞,也就是不同的明文密码生成相同的hash值,这将给系统带来很大的安全漏洞。(参考hash collision

HASH与搜索

hash表被广泛的用于搜索。设定集合A为搜索对象,集合B为存储位置,利用hash函数将搜索对象与存储位置对应起来。这样,我们就可以通过一次hash,将对象所在位置找到。一种常见的情形是,将集合B设定在数组下标。由于数组可以根据数组下标进行随机存取(random access,算法复杂度为1),所以搜索操作将取决于hash函数的复杂程度。

比如我们以人名(字符串)为键值,以数组下标为hash值。每个数组元素中存储有一个指针,指向记录 (有人名和电话号码)。

下面是一个简单的hash函数:

#define HASHSIZE 1007

/* By Vamei
* hash function
*/
int hash(char *p)
{
int value=0;
while((*p) != '\0') {
value = value + (int) (*p); // convert char to int, and sum
p++;
}
return (value % HASHSIZE); // won's exceed HASHSIZE
}

hash value of "Vamei": 498

hash value of "Obama": 480

我们可以建立一个HASHSIZE大小的数组records,用于储存记录。HASHSIZE被选择为质数,以便hash值能更加均匀的分布。在搜索"Vamei"的记录时,可以经过hash,得到hash值498,再直接读取records[498],就可以读取记录了。

(666666是Obama的电话号码,111111是Vamei的电话号码。纯属杜撰,请勿当真)

hash搜索

如果不采用hash,而只是在一个数组中搜索的话,我们需要依次访问每个记录,直到找到目标记录,算法复杂度为n。我们可以考虑一下为什么会有这样的差别。数组虽然可以随机读取,但数组下标是随机的,它与元素值没有任何关系,所以我们要逐次访问各个元素。通过hash函数,我们限定了每个下标位置可能存储的元素。这样,我们利用键值和hash函数,就可以具备相当的先验知识,来选择适当的下标进行搜索。在没有hash碰撞的前提下,我们只需要选择一次,就可以保证该下标指向的元素是我们想要的元素。

冲突

hash函数需要解决hash冲突的问题。比如,上面的hash函数中,"Obama"和"Oaamb"有相同的hash值,发生冲突。我们如何解决呢?

一个方案是将发生冲突的记录用链表储存起来,让hash值指向该链表,这叫做open hashing:

open hashing

我们在搜索的时候,先根据hash值找到链表,再根据key值遍历搜索链表,直到找到记录。我们可以用其他数据结构代替链表。

open hashing需要使用指针。我们有时候想要避免使用指针,以保持随机存储的优势,所以采用closed hashing的方式来解决冲突。

closed hashing

这种情况下,我们将记录放入数组。当有冲突出现的时候,我们将冲突记录放在数组中依然闲置的位置,比如图中Obama被插入后,随后的Oaamb也被hash到480位置。但由于480被占据,Oaamb探测到下一个闲置位置(通过将hash值加1),并记录。

closed hashing的关键在如何探测下一个位置。上面是将hash值加1。但也可以有其它的方式。概括的说,在第i次的时候,我们应该探测POSITION(i)=(h(x) + f(i)) % HASHSIZE的位置。上面将hash值加1的方式,就相当于设定f(i) = 1。当我们在搜索的时候,就可以利用POSITION(i),依次探测记录可能出现的位置,直到找到记录。

(f(i)的选择会带来不同的结果,这里不再深入)

如果数组比较满,那么closed hashing需要进行许多次探测才能找到空位。这样将大大减小插入和搜索的效率。这种情况下,需要增大HASHSIZE,并将原来的记录放入到新的比较大的数组中。这样的操作称为rehashing。

总结

hash表,搜索

hash冲突, open hashing, closed hashing

纸上谈兵:哈希表(hash table)的更多相关文章

  1. 算法与数据结构基础 - 哈希表(Hash Table)

    Hash Table基础 哈希表(Hash Table)是常用的数据结构,其运用哈希函数(hash function)实现映射,内部使用开放定址.拉链法等方式解决哈希冲突,使得读写时间复杂度平均为O( ...

  2. PHP关联数组和哈希表(hash table) 未指定

    PHP有数据的一个非常重要的一类,就是关联数组.又称为哈希表(hash table),是一种很好用的数据结构. 在程序中.我们可能会遇到须要消重的问题,举一个最简单的模型: 有一份username列表 ...

  3. 词典(二) 哈希表(Hash table)

    散列表(hashtable)是一种高效的词典结构,可以在期望的常数时间内实现对词典的所有接口的操作.散列完全摒弃了关键码有序的条件,所以可以突破CBA式算法的复杂度界限. 散列表 逻辑上,有一系列可以 ...

  4. 什么叫哈希表(Hash Table)

    散列表(也叫哈希表),是根据关键码值直接进行访问的数据结构,也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度.这个映射函数叫做散列函数,存放记录的数组叫做散列表. - 数据结构 ...

  5. 数据结构 哈希表(Hash Table)_哈希概述

    哈希表支持一种最有效的检索方法:散列. 从根来上说,一个哈希表包含一个数组,通过特殊的索引值(键)来访问数组中的元素. 哈希表的主要思想是通过一个哈希函数,在所有可能的键与槽位之间建立一张映射表.哈希 ...

  6. 哈希表(Hash table)

  7. Redis原理再学习04:数据结构-哈希表hash表(dict字典)

    哈希函数简介 哈希函数(hash function),又叫散列函数,哈希算法.散列函数把数据"压缩"成摘要,有的也叫"指纹",它使数据量变小且数据格式大小也固定 ...

  8. Hash表 hash table 又名散列表

    直接进去主题好了. 什么是哈希表? 哈希表(Hash table,也叫散列表),是根据key而直接进行访问的数据结构.也就是说,它通过把key映射到表中一个位置来访问记录,以加快查找的速度.这个映射函 ...

  9. 哈希表(Hash)的应用

    $hs=@() #定义数组 $hs=@{} #定义Hash表,使用哈希表的键可以直接访问对应的值,如 $hs["王五"] 或者 $hs.王五 的值为 75 $hs=@''@ #定义 ...

  10. (四)Redis哈希表Hash操作

    Hash全部命令如下: hset key field value # 将哈希表key中的字段field的值设为value hget key field # 返回哈希表key中的字段field的值val ...

随机推荐

  1. Jmeter—6 CSV Data Set Config 通过文件导入数据

    线程组循环次数大于1的时候,请求里每次提交的数据都相同.有的系统限制了不能提交相同数据,我们通过 CSV Data Set Config 加载csv文件数据. 1 创建一个文本文件,输入参数值保存为. ...

  2. 【Android】配置APK开发环境

    1.安装java jdk去oracle公司下载jdk-7u15-windows-i586.exehttp://www.oracle.com/technetwork/cn/java/javase/dow ...

  3. 进监狱全攻略之 Mifare1 Card 破解

    补充新闻:程序员黑餐馆系统 给自己饭卡里充钱 ,技术是双刃剑,小心,小心! 前言 从M1卡的验证漏洞被发现到现今,破解设备层出不穷,所以快速傻瓜式一键破解不是本文的重点,年轻司机将从本文中获得如下技能 ...

  4. 解决如何监听Activity切换

    本篇博文在我之前的博文中已经提到了,但是监听Activity切换又可以作为一个单独的内容来叙述,因此这里又单独拿了出来进行赘述. Activity的切换无非有两种,第一种:启动或者创建一个新的Acti ...

  5. BZOJ 4326 树链剖分+二分+差分+记忆化

    去年NOIP的时候我还不会树链剖分! 还是被UOJ 的数据卡了一组. 差分的思想还是很神啊! #include <iostream> #include <cstring> #i ...

  6. php-数据库访问--数据修改

    主页面元素修改脚本 <?php $code = $_GET["c"]; //造连接对象 $db = new MySQLi("localhost",&quo ...

  7. nat转换

    实验目的: (1)     了解nat转换 (2)     了解nat转换配置命令 (3)     了解哪些是私有ip地址哪些不是私有ip地址 实验工具: 华为eNSP模拟器和Wireshar 实验拓 ...

  8. 更新EF,EF 报错

    在项目中,对一个视图进行了更新,增加了一个字段,然后需要更新EF访问,可是往往会报错, 查看映射关系发现EF将字段映射为主键,而视图没有进行ISNULL处理. 可以有两种处理方式: 1:修改视图对字段 ...

  9. python数据结构与算法——字典树

    class TrieTree(): def __init__(self): self.root = {} def addNode(self,str): # 树中每个结点(除根节点),包含到该结点的单词 ...

  10. UVa 439骑士的移动(BFS)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...