《Linux内核分析》第一周 计算机是如何工作的?
刘蔚然 原创作品转载请注明出处 《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000】
WEEK ONE(2.22——2.28)计算机是如何工作的?
【基本的汇编程序工作原理】
SECTION 1 存储程序计算机
1.1冯诺依曼体系结构:即具有存储程序的计算机体系结构
目前大多数拥有计算和存储功能的设备(智能手机、平板、计算机等)其核心构造均为冯诺依曼体系结构
- 从硬件来看
- CPU与内存通过主线连接,CPU上的IP(可能是16、32、64位)总指向内存的某一块区域;IP指向的CS(代码段)也在内存中;CPU总是执行IP指向的指令。
- 从软件来看
- API(应用程序编程接口,与编程人员)与ABI(程序与CPU的借口界面) 是两个比较重要的软件接口
1.2 课件4/21
关于ABI:指令编码;指令中涉及的寄存器布局;大多数指令可以直接访问内存
1.3 课件5/21
(E代表32位系统)EIP在CPU执行完一条指令之后自加一(自动加一条指令,而不是一个字节或是32位),当然也可以被其它指令,如CALL,RET等修改
SECTION 2 x86汇编基础
2.1 x86(32位)的寄存器中,低16位作为16位register
2.2 关于堆栈段寄存器
EBP(堆栈基址寄存器);ESP(堆栈顶指针寄存器)。上述两个寄存器较为频繁地使用于汇编程序中
2.3 关于代码段寄存器
CPU实际取指令的时候通过cs:eip来描述
2.4 64位CPU
其实与32位在核心机制上差别不大,64位的机器中,寄存器以RXX表示
2.5 常见汇编指令
- 后缀的b,w,l,q分别代表8,16,32,64位
- 以%标识的寄存器寻址不与内存“打交道”
- 直接寻址&立即数寻址
- movl $0x123,%eax —— %eax=0x123
- movl 0x123,%eax —— 立即数是以$开头的十六进制数值。直接访问指定的内存地址(0x123)中的数据然后赋给%eax
变址寻址
movl 4(%ebx),%edx//edx = *(inet_32 *)(ebx+4),即ebx的值加4之后作为一个地址,将其指向的数据赋给%edx
- 大多数指令都可以直接访问内存地址
- Linux使用的A&T汇编格式与Intel汇编略有不同
几条重要的汇编指令
2.6汇编小程序练习
以上图中的片段1和3为例完成堆栈变化图:
SECTION 3 汇编一个简单的C程序
3.1 将C代码编译成汇编代码
- 将代码在实验楼环境中(64位)保存之后,建议使用 -m32将其编译为32位的汇编代码
具体如下:
gcc -S -o main.s main.c -m32
- 关于leave指令
- leave指令与enter指令一起相当于两条宏指令
- (
- enter指令相当于在原来的堆栈上再建一个新的空堆栈【因为将栈底指针%ebp挪到和栈顶指针相同的位置了】
- leave指令与enter相反,相当于撤销函数调用堆栈【把栈顶指针提上来,则撤消了该栈】
- 函数调用堆栈是由逻辑上多个堆栈叠加起来的。
- 函数的返回值默认用%eax存储,然后返回给上一级函数。
3.2 练习2
【分析】
- 从main函数的堆栈变化开始看,可以发现堆栈中填充了8;猜想8可能是主函数传给g(x)的参数;
- 调到g后,可以看到先将8传给了%eax;然后再加上了8,紧接着弹栈;猜想应该是x+8;
- 主函数又减去了8.这样得到的是x+8-8;
函数应该如下:
int g(int x)
{
return x+8;
}
int main(void)
{
return g(8)-8;
}
实验部分
- 实验步骤
- 实验代码
- 代码汇编结果
add:
pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %eax
addl $6, %eax
popl %ebp
ret
f:
pushl %ebp
movl %esp, %ebp
subl $4, %esp
movl 8(%ebp), %eax
movl %eax, (%esp)
call add
leave
ret
main:
pushl %ebp
movl %esp, %ebp
subl $4, %esp
movl $6, (%esp)
call f
addl $1, %eax
leave
ret
- 分析(堆栈变化过程图解)
总结
理解“计算机是如何工作的”?
【理解】
我认为,首先需要明确的一点就是:计算机并不“聪明”;相反的是,计算机十分“笨拙”。越是简洁通用的规则(哪怕代价是需要很多的重复计算)越能够让计算机充分发挥其优势——见字面意思,即“计算(compute)”。
- 计算机的硬件设施部分,就如第一讲中讲到的那样,除了核心CPU之外,还有寄存器、高速缓存、主存乃至外存这样种类繁多的存储设备。存储设备(这也是冯 诺依曼体系结构的一个重要支点)根本目的就是为CPU服务,存储各种各样的、区分轻重缓急的数据;
- 有了上面的硬件基础,计算机的工作过程就集中在了CPU和为其传输数据的地址总线上。各种各样的I/O设备传来的信息、计算机内置的各种程序(比如一些规则、保障性机制)甚至于网络上传播的木马病毒……形形色色的data与code集合都要整合成一条条指令——还是那句话,计算机很“笨拙”,它(CPU)执行的最底层的操作就是N种指令而已;
- 计算机的这些指令的执行过程就如同汇编程序中显示的那样,CPU兢兢业业地往各种寄存器中填入数据、跳转或者撤销、释放……这一系列的基本操作(当然还要有硬件配合)在极短的时间完成,未来还会将时间进一步缩短。然后,不可思议的事情就这么发生了:我们可以在计算机中进行闪电般的运算、将各种媒体形式传输到网络上……然而,这些的基础都将追溯到这些0101串中。
《Linux内核分析》第一周 计算机是如何工作的?的更多相关文章
- Linux内核分析第一周——计算机是如何工作的
冯诺依曼体系结构 核心思想 1.冯诺依曼是:数字计算机的数制采用二进制:计算机应该按照程序顺序执行. 2.采用二进制作为计算机数值计算的基础,以0.1代表数值.不采用人类常用的十进制计数方法,二进制使 ...
- linux内核分析 第一周 计算机是如何工作的 20125221银雪纯
我使用的c语言代码是: int g(int x) { return x + 1; } int f(int x) { return g(x); } int main(void) { return f(6 ...
- LINUX内核分析第一周学习总结——计算机是如何工作的
LINUX内核分析第一周学习总结——计算机是如何工作的 张忻(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course/ ...
- Linux内核分析第一周学习博客 --- 通过反汇编方式学习计算机工作过程
Linux内核分析第一周学习博客 通过反汇编方式学习计算机工作过程 总结: 通过这次对一个简单C程序的反汇编学习,我了解到计算机在实际工作工程中要涉及大量的跳转指针操作.计算机通常是顺序执行一条一条的 ...
- linux内核分析第一周学习笔记
linux内核分析第一周学习笔记 标签(空格分隔): 20135328陈都 陈都 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.co ...
- Linux内核分析第二周--操作系统是如何工作的
Linux内核分析第二周--操作系统是如何工作的 李雪琦 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course ...
- 《Linux内核分析》 之 计算机是如何工作的
[李行之原创作品 转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000] <Linux内 ...
- Linux内核分析——第一周学习笔记20135308
第一周 计算机是如何工作的 第一节 存储程序计算机工作模型 1.冯·诺依曼结构模型:冯·诺依曼结构也称普林斯顿结构,是一种将程序指令存储器和数据存储器合并在一起的存储器结构.程序指令存储地址和数据存储 ...
- Linux内核分析第一周学习总结:计算机是如何工作的?
韩玉琪 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.冯诺依曼体系 ...
- Linux内核及分析 第一周 计算机是如何工作的?
C语言代码: int g(int x) { return x + 5; } int f(int x) { return g(x); } int main(void) { return f(5) + 1 ...
随机推荐
- iOS学习08之C语言内存管理
本次主要学习和理解C语言中的内存管理 1.存储区划分 按照地址从高到低的顺序:栈区,堆区,静态区,常量区,代码区 1> 栈区:局部变量的存储区域 局部变量基本都在函数.循环.分支中定义 栈区的内 ...
- No configuration found for the specified action解决办法
http://blog.csdn.net/carefree31441/article/details/4857546 使用Struts2,配置一切正常,使用常用tag也正常,但是在使用<s:fo ...
- 20145304 刘钦令 Java程序设计第一周学习总结
20145304<Java程序设计>第1周学习总结 教材学习内容总结 1995年5月23日,是公认的Java的诞生日,Java正式由Oak改名为Java. Java的三大平台是:Java ...
- Codeforces Round #235 (Div. 2) B. Sereja and Contests
#include <iostream> #include <vector> #include <algorithm> using namespace std; in ...
- [Leetcode] Recover Binary Search Tree
Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...
- usaco silver刷水~其实是回顾一下,补题解
[BZOJ1606][Usaco2008 Dec]Hay For Sale 裸01背包 ;i<=n;i++) for(int j=m;j>=a[i];j--) f[j]=max(f[j], ...
- css learn
float: 1.margin属性本身与float无关.写不写float都可以margin. 2.top,right,bottom,left和z-index都无法使用. 3.父元素浮动,子元素在其中仍 ...
- 深入浅出 - Android系统移植与平台开发(三)- 编译并运行Android4.0模拟器
作者:唐老师,华清远见嵌入式学院讲师. 1. 编译Android模拟器 在Ubuntu下,我们可以在源码里编译出自己的模拟器及SDK等编译工具,当然这个和在windows里下载的看起来没有什么区别 ...
- (转)深入理解flash重绘
深入理解Flash Player重绘 Flash Player 会以SWF内容的帧频速度来刷新需要变化的内容,而这个刷新的过程,我们通常称为“重绘(redraw)”,相信即便是初级的菜鸟也知道,只要使 ...
- [LintCode] Coins in a Line 一条线上的硬币
There are n coins in a line. Two players take turns to take one or two coins from right side until t ...