1.1. Example: Polynomial Curve Fitting

  1. Movitate a number of concepts:

    (1) linear models: Functions which are linear in the unknow parameters. Polynomail is a linear model. For the Polynomail curve fitting problem, the models is :

        

    which is a linear model.

    (2) error function: error function measures the misfit between the prediction and the training set point. For instance, sum of the squares of the errors is one simple function, which is widely used, and is given:

        

    (3) model comparison or model selection

    (4) over-fitting: the model abtains excellent fit to training data and give a very poor performance on test data. And this behavior is known as over-fitting.

    (5) regularization: One technique which is often used to control the over-fitting phenomenon, and it involves adding a penalty term to the error function in order to discourage the coefficients from reaching large values. The simplest such penalty term takes the form of a sum of aquares of all of the coefficients, leading to a modified error function of the form:

        

And this particular case of a quadratic regularizer is called ridge regression (Hoerl and Kennard, 1970). In the context of neural networks, this approach is known as weight decay.

    (6) validation set, also called a hold-out set: If we were trying to solve a practical application using this approach of minimizing an error function, we would have to find a way to determine a suitable value for the model complexity. a simple way of achieving this, namely by taking the available data and partitioning it into a training set, used to determine the coefficients w, and a separate validation set, also called a hold-out set, used to optimize the model complexity.

1.2. Probability Theory

1. The rules of probability. Sum rule and product rule.

     

2. Bayes’ theorem.

  

3. Probability densities

4. Expectations and covariances

5. Bayesian probabilities.

  Bayes’ theorem was used to convert a prior probability into a posterior probability by incorporating the evidence provided by the observed data.

6. Gaussian distribution

  

7.maximizing the posterior distribution is equivalent to minimizing the regularized sum-of-squares error function.

1.3. Model Selection

1.6. Information Theory

1 entropy

Next Chapter

PRML读书笔记——Introduction的更多相关文章

  1. PRML读书笔记——3 Linear Models for Regression

    Linear Basis Function Models 线性模型的一个关键属性是它是参数的一个线性函数,形式如下: w是参数,x可以是原始的数据,也可以是关于原始数据的一个函数值,这个函数就叫bas ...

  2. PRML读书笔记——机器学习导论

    什么是模式识别(Pattern Recognition)? 按照Bishop的定义,模式识别就是用机器学习的算法从数据中挖掘出有用的pattern. 人们很早就开始学习如何从大量的数据中发现隐藏在背后 ...

  3. PRML读书笔记——2 Probability Distributions

    2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...

  4. PRML读书笔记——Mathematical notation

    x, a vector, and all vectors are assumed to be column vectors. M, denote matrices. xT, a row vcetor, ...

  5. 【PRML读书笔记-Chapter1-Introduction】1.6 Information Theory

    熵 给定一个离散变量,我们观察它的每一个取值所包含的信息量的大小,因此,我们用来表示信息量的大小,概率分布为.当p(x)=1时,说明这个事件一定会发生,因此,它带给我的信息为0.(因为一定会发生,毫无 ...

  6. 【PRML读书笔记-Chapter1-Introduction】1.5 Decision Theory

    初体验: 概率论为我们提供了一个衡量和控制不确定性的统一的框架,也就是说计算出了一大堆的概率.那么,如何根据这些计算出的概率得到较好的结果,就是决策论要做的事情. 一个例子: 文中举了一个例子: 给定 ...

  7. 【PRML读书笔记-Chapter1-Introduction】1.4 The Curse of Dimensionality

    维数灾难 给定如下分类问题: 其中x6和x7表示横轴和竖轴(即两个measurements),怎么分? 方法一(simple): 把整个图分成:16个格,当给定一个新的点的时候,就数他所在的格子中,哪 ...

  8. 【PRML读书笔记-Chapter1-Introduction】1.3 Model Selection

    在训练集上有个好的效果不见得在测试集中效果就好,因为可能存在过拟合(over-fitting)的问题. 如果训练集的数据质量很好,那我们只需对这些有效数据训练处一堆模型,或者对一个模型给定系列的参数值 ...

  9. 【PRML读书笔记-Chapter1-Introduction】1.2 Probability Theory

    一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉. ...

随机推荐

  1. ACM: 畅通工程-并查集-解题报告

    畅通工程 Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Description 某省调查城镇交通状况 ...

  2. [WP8.1UI控件编程]Windows Phone理解和运用ItemTemplate、ContentTemplate和DataTemplate

    2.2.5 ItemTemplate.ContentTemplate和DataTemplate 在理解ItemTemplate.ContentTemplate和DataTemplate的关系的之前,我 ...

  3. 【noiOJ】p8210

    10:河中跳房子 查看 提交 统计 提问 总时间限制:  1000ms 内存限制:  65536kB 描述 每年奶牛们都要举办各种特殊版本的跳房子比赛,包括在河里从一个岩石跳到另一个岩石.这项激动人心 ...

  4. osgearth各个例子功能概述

    osgearth各个例子功能概述 转自:http://blog.csdn.net/wl198302/article/details/21177309 最近在学习osgearth,对其还不是很理解,有些 ...

  5. Linux下rar命令详解

    Linux下rar命令详解 用法: rar <命令> -<选项1> ….-<选项N> < 操作文档> <文件…> <@文件列表…> ...

  6. 浅析-博客Ping服务

    简介:PING服务是博客站点向博客目标网站.搜索引擎等发出的博客内容更新通知服务,然后博客目标网站.搜索引擎就会及时的索引.收录以及传播您的博客内容. PING原理 PING 服务是博客站点向博客目标 ...

  7. 段落的展开收起(substring的应用)

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  8. acm常见算法及例题

    转自:http://blog.csdn.net/hengjie2009/article/details/7540135 acm常见算法及例题  初期:一.基本算法:     (1)枚举. (poj17 ...

  9. javascript通过时区获取时间

    /* 描述:时区的换算 参数:offset时区位置 使用:东八区calcTime(”+8"); */ function calcTime(offset) { // 创建一个本地日期 var ...

  10. Chrome开发,debug的使用方法。

    怎样打开Chrome的开发者工具? 你可以直接在页面上点击右键,然后选择审查元素: 或者在Chrome的工具中找到: 或者,你直接记住这个快捷方式: Ctrl+Shift+I (或者Ctrl+Shif ...