PRML读书笔记——Introduction
1.1. Example: Polynomial Curve Fitting
1. Movitate a number of concepts:
(1) linear models: Functions which are linear in the unknow parameters. Polynomail is a linear model. For the Polynomail curve fitting problem, the models is :

which is a linear model.
(2) error function: error function measures the misfit between the prediction and the training set point. For instance, sum of the squares of the errors is one simple function, which is widely used, and is given:

(3) model comparison or model selection
(4) over-fitting: the model abtains excellent fit to training data and give a very poor performance on test data. And this behavior is known as over-fitting.
(5) regularization: One technique which is often used to control the over-fitting phenomenon, and it involves adding a penalty term to the error function in order to discourage the coefficients from reaching large values. The simplest such penalty term takes the form of a sum of aquares of all of the coefficients, leading to a modified error function of the form:

And this particular case of a quadratic regularizer is called ridge regression (Hoerl and Kennard, 1970). In the context of neural networks, this approach is known as weight decay.
(6) validation set, also called a hold-out set: If we were trying to solve a practical application using this approach of minimizing an error function, we would have to find a way to determine a suitable value for the model complexity. a simple way of achieving this, namely by taking the available data and partitioning it into a training set, used to determine the coefficients w, and a separate validation set, also called a hold-out set, used to optimize the model complexity.
1.2. Probability Theory
1. The rules of probability. Sum rule and product rule.

2. Bayes’ theorem.


3. Probability densities
4. Expectations and covariances
5. Bayesian probabilities.
Bayes’ theorem was used to convert a prior probability into a posterior probability by incorporating the evidence provided by the observed data.
6. Gaussian distribution


7.maximizing the posterior distribution is equivalent to minimizing the regularized sum-of-squares error function.
1.3. Model Selection
1.6. Information Theory
1 entropy

PRML读书笔记——Introduction的更多相关文章
- PRML读书笔记——3 Linear Models for Regression
Linear Basis Function Models 线性模型的一个关键属性是它是参数的一个线性函数,形式如下: w是参数,x可以是原始的数据,也可以是关于原始数据的一个函数值,这个函数就叫bas ...
- PRML读书笔记——机器学习导论
什么是模式识别(Pattern Recognition)? 按照Bishop的定义,模式识别就是用机器学习的算法从数据中挖掘出有用的pattern. 人们很早就开始学习如何从大量的数据中发现隐藏在背后 ...
- PRML读书笔记——2 Probability Distributions
2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...
- PRML读书笔记——Mathematical notation
x, a vector, and all vectors are assumed to be column vectors. M, denote matrices. xT, a row vcetor, ...
- 【PRML读书笔记-Chapter1-Introduction】1.6 Information Theory
熵 给定一个离散变量,我们观察它的每一个取值所包含的信息量的大小,因此,我们用来表示信息量的大小,概率分布为.当p(x)=1时,说明这个事件一定会发生,因此,它带给我的信息为0.(因为一定会发生,毫无 ...
- 【PRML读书笔记-Chapter1-Introduction】1.5 Decision Theory
初体验: 概率论为我们提供了一个衡量和控制不确定性的统一的框架,也就是说计算出了一大堆的概率.那么,如何根据这些计算出的概率得到较好的结果,就是决策论要做的事情. 一个例子: 文中举了一个例子: 给定 ...
- 【PRML读书笔记-Chapter1-Introduction】1.4 The Curse of Dimensionality
维数灾难 给定如下分类问题: 其中x6和x7表示横轴和竖轴(即两个measurements),怎么分? 方法一(simple): 把整个图分成:16个格,当给定一个新的点的时候,就数他所在的格子中,哪 ...
- 【PRML读书笔记-Chapter1-Introduction】1.3 Model Selection
在训练集上有个好的效果不见得在测试集中效果就好,因为可能存在过拟合(over-fitting)的问题. 如果训练集的数据质量很好,那我们只需对这些有效数据训练处一堆模型,或者对一个模型给定系列的参数值 ...
- 【PRML读书笔记-Chapter1-Introduction】1.2 Probability Theory
一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉. ...
随机推荐
- ACM: HDU 5418 Victor and World - Floyd算法+dp状态压缩
HDU 5418 Victor and World Time Limit:2000MS Memory Limit:131072KB 64bit IO Format:%I64d & ...
- VB远程访问MYSQL代码图解
首先需要安装MySQL Connector/ODBC 地址:http://dev.mysql.com/downloads/connector/odbc/ 根据自己的系统(运行环境: Win7/XP/W ...
- 简单图解设置MYSQL可以通过其他机器远程访问,开启远程访问权限
开始,运行---cmd,然后cd到mysql.exe目录,然后照着下图红色框中输入 注意: 1.MySQL 5.7查询时候应该输入select host,user,authentication_str ...
- 【BZOJ】3065: 带插入区间K小值
http://www.lydsy.com/JudgeOnline/problem.php?id=3065 题意:带插入.修改的区间k小值在线查询.(原序列n<=35000, 询问<=175 ...
- BZOJ3293: [Cqoi2011]分金币
Description 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的金币数量的最小值. Inpu ...
- 九、UINavigationController切换视图 实例
现版本 SDK 8.4 Xcode 运行Xcode 选择 Create a new Xcode project ->Single View Application 命名 NavigationCo ...
- GO语言练习:第一个Go语言工程--排序
1.代码 2.编译 3.运行 1.代码框架 /home/fengbo/sorter $ tree . ├── bin ├── pkg ├── readme.txt └── src ├── algori ...
- mysql中一些简单但是新手容易犯的错误
一.概述 本人近期使用mysql,由于是新手,常常碰到一些问题,因此,在这里做了一个错误备忘录. 二.错误罗列 1.MySQL 记录不存在时插入 记录存在则更新的实现方法 http://www.cnb ...
- 普通工程转为mvn工程
不同类型的工程可以转为mvn工程, 只需要一个插件 You may need to install m2e-eclipse plugin in order to have this simple ut ...
- 建立和断开与MySQL服务器的连接
MySQL 与 mysql 之间的区别: MySQL指完整的MySQL DBMS系统,mysql仅代表一个特定的客户程序. 连接服务器: >mysql -h host_name -p -u us ...