1.1. Example: Polynomial Curve Fitting

  1. Movitate a number of concepts:

    (1) linear models: Functions which are linear in the unknow parameters. Polynomail is a linear model. For the Polynomail curve fitting problem, the models is :

        

    which is a linear model.

    (2) error function: error function measures the misfit between the prediction and the training set point. For instance, sum of the squares of the errors is one simple function, which is widely used, and is given:

        

    (3) model comparison or model selection

    (4) over-fitting: the model abtains excellent fit to training data and give a very poor performance on test data. And this behavior is known as over-fitting.

    (5) regularization: One technique which is often used to control the over-fitting phenomenon, and it involves adding a penalty term to the error function in order to discourage the coefficients from reaching large values. The simplest such penalty term takes the form of a sum of aquares of all of the coefficients, leading to a modified error function of the form:

        

And this particular case of a quadratic regularizer is called ridge regression (Hoerl and Kennard, 1970). In the context of neural networks, this approach is known as weight decay.

    (6) validation set, also called a hold-out set: If we were trying to solve a practical application using this approach of minimizing an error function, we would have to find a way to determine a suitable value for the model complexity. a simple way of achieving this, namely by taking the available data and partitioning it into a training set, used to determine the coefficients w, and a separate validation set, also called a hold-out set, used to optimize the model complexity.

1.2. Probability Theory

1. The rules of probability. Sum rule and product rule.

     

2. Bayes’ theorem.

  

3. Probability densities

4. Expectations and covariances

5. Bayesian probabilities.

  Bayes’ theorem was used to convert a prior probability into a posterior probability by incorporating the evidence provided by the observed data.

6. Gaussian distribution

  

7.maximizing the posterior distribution is equivalent to minimizing the regularized sum-of-squares error function.

1.3. Model Selection

1.6. Information Theory

1 entropy

Next Chapter

PRML读书笔记——Introduction的更多相关文章

  1. PRML读书笔记——3 Linear Models for Regression

    Linear Basis Function Models 线性模型的一个关键属性是它是参数的一个线性函数,形式如下: w是参数,x可以是原始的数据,也可以是关于原始数据的一个函数值,这个函数就叫bas ...

  2. PRML读书笔记——机器学习导论

    什么是模式识别(Pattern Recognition)? 按照Bishop的定义,模式识别就是用机器学习的算法从数据中挖掘出有用的pattern. 人们很早就开始学习如何从大量的数据中发现隐藏在背后 ...

  3. PRML读书笔记——2 Probability Distributions

    2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...

  4. PRML读书笔记——Mathematical notation

    x, a vector, and all vectors are assumed to be column vectors. M, denote matrices. xT, a row vcetor, ...

  5. 【PRML读书笔记-Chapter1-Introduction】1.6 Information Theory

    熵 给定一个离散变量,我们观察它的每一个取值所包含的信息量的大小,因此,我们用来表示信息量的大小,概率分布为.当p(x)=1时,说明这个事件一定会发生,因此,它带给我的信息为0.(因为一定会发生,毫无 ...

  6. 【PRML读书笔记-Chapter1-Introduction】1.5 Decision Theory

    初体验: 概率论为我们提供了一个衡量和控制不确定性的统一的框架,也就是说计算出了一大堆的概率.那么,如何根据这些计算出的概率得到较好的结果,就是决策论要做的事情. 一个例子: 文中举了一个例子: 给定 ...

  7. 【PRML读书笔记-Chapter1-Introduction】1.4 The Curse of Dimensionality

    维数灾难 给定如下分类问题: 其中x6和x7表示横轴和竖轴(即两个measurements),怎么分? 方法一(simple): 把整个图分成:16个格,当给定一个新的点的时候,就数他所在的格子中,哪 ...

  8. 【PRML读书笔记-Chapter1-Introduction】1.3 Model Selection

    在训练集上有个好的效果不见得在测试集中效果就好,因为可能存在过拟合(over-fitting)的问题. 如果训练集的数据质量很好,那我们只需对这些有效数据训练处一堆模型,或者对一个模型给定系列的参数值 ...

  9. 【PRML读书笔记-Chapter1-Introduction】1.2 Probability Theory

    一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉. ...

随机推荐

  1. Kafka剖析(一):Kafka背景及架构介绍

    http://www.infoq.com/cn/articles/kafka-analysis-part-1/ Kafka是由LinkedIn开发的一个分布式的消息系统,使用Scala编写,它以可水平 ...

  2. 再谈Jquery Ajax方法传递到action

     原始出处 :http://cnn237111.blog.51cto.com/2359144/984466  本人只是转载 原文如下: 假设 controller中的方法是如下: public Act ...

  3. 制作、解析带logo的二维码

    用DecoderQRCode来解析带logo的二维码,发现报错,解析不了,于是便又查资料,找到了更强大的制作二维码 工具:GooleZXing 首先下GooleZXing的jar包. -------- ...

  4. Qt Load and Save PCL/PLY 加载和保存点云

    Qt可以跟VTK和PCL等其他库联合使用,十分强大,下面的代码展示了如何使用Qt联合PCL库来加载和保存PCL/PLY格式的点云: 通过按钮加载点云: void QMainWindow::on_pb_ ...

  5. Oracle--数据库中的五种约束

    数据库中的五种约束 数据库中的五种约束及其添加方法 五大约束 1.--主键约束(Primay Key Coustraint) 唯一性,非空性  2.--唯一约束 (Unique Counstraint ...

  6. [转载]触发ASSERT(afxCurrentResourceHandle != NULL)错误的原因

    触发ASSERT(afxCurrentResourceHandle != NULL)错误的原因 Debug Assert error afxwin1.inl line:22 翻译参考 http://w ...

  7. 常见26个jquery使用技巧详解(比如禁止右键点击、隐藏文本框文字等)

      来自:http://www.xueit.com/js/show-6015-1.aspx 本文列出jquery一些应用小技巧,比如有禁止右键点击.隐藏搜索文本框文字.在新窗口中打开链接.检测浏览器. ...

  8. Rocky4.2下安装金仓v7数据库(KingbaseES)

    1.准备操作系统 1.1 系统登录界面 1.2 操作系统版本信息 jdbh:~ # uname -ra Linux jdbh -x86_64 # SMP Fri Dec :: CST x86_64 G ...

  9. 设置Oracle时间格式

    ORACLE的DATE类型的显示方式取决于NLS_DATE_FORMAT初始化参数NLS_DATE_FORMAT参数可以在以下几个级别设置1.数据库级别——如果希望所有人都看到某种格式的数据,则在SQ ...

  10. 为什么会出现Python Exception <class 'gdb.MemoryError'> Cannot access memory at address 问题?

    问题描述:        把列表listview写入notebook里. 在main函数中, win = create_and_set_a_window(); book = gtk_notebook_ ...