1.1. Example: Polynomial Curve Fitting

  1. Movitate a number of concepts:

    (1) linear models: Functions which are linear in the unknow parameters. Polynomail is a linear model. For the Polynomail curve fitting problem, the models is :

        

    which is a linear model.

    (2) error function: error function measures the misfit between the prediction and the training set point. For instance, sum of the squares of the errors is one simple function, which is widely used, and is given:

        

    (3) model comparison or model selection

    (4) over-fitting: the model abtains excellent fit to training data and give a very poor performance on test data. And this behavior is known as over-fitting.

    (5) regularization: One technique which is often used to control the over-fitting phenomenon, and it involves adding a penalty term to the error function in order to discourage the coefficients from reaching large values. The simplest such penalty term takes the form of a sum of aquares of all of the coefficients, leading to a modified error function of the form:

        

And this particular case of a quadratic regularizer is called ridge regression (Hoerl and Kennard, 1970). In the context of neural networks, this approach is known as weight decay.

    (6) validation set, also called a hold-out set: If we were trying to solve a practical application using this approach of minimizing an error function, we would have to find a way to determine a suitable value for the model complexity. a simple way of achieving this, namely by taking the available data and partitioning it into a training set, used to determine the coefficients w, and a separate validation set, also called a hold-out set, used to optimize the model complexity.

1.2. Probability Theory

1. The rules of probability. Sum rule and product rule.

     

2. Bayes’ theorem.

  

3. Probability densities

4. Expectations and covariances

5. Bayesian probabilities.

  Bayes’ theorem was used to convert a prior probability into a posterior probability by incorporating the evidence provided by the observed data.

6. Gaussian distribution

  

7.maximizing the posterior distribution is equivalent to minimizing the regularized sum-of-squares error function.

1.3. Model Selection

1.6. Information Theory

1 entropy

Next Chapter

PRML读书笔记——Introduction的更多相关文章

  1. PRML读书笔记——3 Linear Models for Regression

    Linear Basis Function Models 线性模型的一个关键属性是它是参数的一个线性函数,形式如下: w是参数,x可以是原始的数据,也可以是关于原始数据的一个函数值,这个函数就叫bas ...

  2. PRML读书笔记——机器学习导论

    什么是模式识别(Pattern Recognition)? 按照Bishop的定义,模式识别就是用机器学习的算法从数据中挖掘出有用的pattern. 人们很早就开始学习如何从大量的数据中发现隐藏在背后 ...

  3. PRML读书笔记——2 Probability Distributions

    2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...

  4. PRML读书笔记——Mathematical notation

    x, a vector, and all vectors are assumed to be column vectors. M, denote matrices. xT, a row vcetor, ...

  5. 【PRML读书笔记-Chapter1-Introduction】1.6 Information Theory

    熵 给定一个离散变量,我们观察它的每一个取值所包含的信息量的大小,因此,我们用来表示信息量的大小,概率分布为.当p(x)=1时,说明这个事件一定会发生,因此,它带给我的信息为0.(因为一定会发生,毫无 ...

  6. 【PRML读书笔记-Chapter1-Introduction】1.5 Decision Theory

    初体验: 概率论为我们提供了一个衡量和控制不确定性的统一的框架,也就是说计算出了一大堆的概率.那么,如何根据这些计算出的概率得到较好的结果,就是决策论要做的事情. 一个例子: 文中举了一个例子: 给定 ...

  7. 【PRML读书笔记-Chapter1-Introduction】1.4 The Curse of Dimensionality

    维数灾难 给定如下分类问题: 其中x6和x7表示横轴和竖轴(即两个measurements),怎么分? 方法一(simple): 把整个图分成:16个格,当给定一个新的点的时候,就数他所在的格子中,哪 ...

  8. 【PRML读书笔记-Chapter1-Introduction】1.3 Model Selection

    在训练集上有个好的效果不见得在测试集中效果就好,因为可能存在过拟合(over-fitting)的问题. 如果训练集的数据质量很好,那我们只需对这些有效数据训练处一堆模型,或者对一个模型给定系列的参数值 ...

  9. 【PRML读书笔记-Chapter1-Introduction】1.2 Probability Theory

    一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉. ...

随机推荐

  1. 理解钩子Hook以及在Thinkphp下利用钩子使用行为扩展

    什么是钩子函数 个人理解:钩子就像一个”陷阱”.”监听器”,当A发送一个消息到B时,当消息还未到达目的地B时,被钩子拦截调出一部分代码做处理,这部分代码也叫钩子函数或者回调函数 参考网上说法 譬如我们 ...

  2. 腾讯云Linux系统中启动自己安装的tomcat

    腾讯云Linux系统中启动自己安装的tomcat 首先通过工具查看一下安装的tomcat的位置 进入命令行之后输入以下指令: 此时,tomcat已经启动了.

  3. zabbix3.2.0beta2 监控模版

    Zabbix监控中用到了一系列模版,nginx后端检测状态 微信告警等一系列常规的服务应用监控 memcached监控模版,可以自己重新定义memcached的端口 http://files.cnbl ...

  4. Sortable Observable Collection in C#

    Sorting outside the collection protected override void OnNavigatedTo(NavigationEventArgs e) { if (Se ...

  5. 将bootstrap弹出框的点击弹出改为鼠标移入弹出

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  6. 李洪强漫谈iOS开发[C语言]-045-循环结构

  7. 普通工程转为mvn工程

    不同类型的工程可以转为mvn工程, 只需要一个插件 You may need to install m2e-eclipse plugin in order to have this simple ut ...

  8. php链接mysql数据库

    php连接数据库有三种方法,刚刚发现通过mysql_connect,mysql_query连接已被废弃,而现在推荐的是通过“面向对象方法”和“PDO方法”连接数据库. 而我在使用面向对象的方法连接时, ...

  9. asp.Net2.0中TextBox设置只读后后台获取不到值的解决方法

    http://www.cnblogs.com/yxyht/archive/2013/03/02/2939883.html   ASP.NET中TextBox控件设置ReadOnly="tru ...

  10. Eclipse安装jad插件进行反编译

    1.下载的eclipse是免安装的工具: 打开eclipse后在windows-preference下没有找到jadClipse,希望显示这个插件: 方法一:Help-Eclipse Marketpl ...