X问题

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2980    Accepted Submission(s): 942

Problem Description
求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod a[i] = b[i], … (0 < a[i] <= 10)。
 
Input
输入数据的第一行为一个正整数T,表示有T组测试数据。每组测试数据的第一行为两个正整数N,M (0 < N <= 1000,000,000 , 0 < M <= 10),表示X小于等于N,数组a和b中各有M个元素。接下来两行,每行各有M个正整数,分别为a和b中的元素。
 
Output
对应每一组输入,在独立一行中输出一个正整数,表示满足条件的X的个数。
 
Sample Input
3
10 3
1 2 3
0 1 2
100 7
3 4 5 6 7 8 9
1 2 3 4 5 6 7
10000 10
1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9
 
Sample Output
1
0
3
 
Author
lwg
 
Source
 
Recommend
linle   |   We have carefully selected several similar problems for you:  1788 1452 1299 1370 3826 
 

基本是模板题:

当命题正确是在每个最小公倍数内有唯一解。

注意一下符合条件的个数= 上限数/最小公倍数 ,注意0的处理。

 //0MS    244K    1687 B    C++
#include<stdio.h>
__int64 gcd(__int64 a,__int64 b)
{
return b?gcd(b,a%b):a;
}
__int64 extend_euclid(__int64 a,__int64 b,__int64 &x,__int64 &y)
{
if(b==){
x=;y=;
return a;
}
__int64 d=extend_euclid(b,a%b,x,y);
__int64 t=x;
x=y;
y=t-a/b*y;
return d;
}
__int64 inv(__int64 a,__int64 n)
{
__int64 x,y;
__int64 t=extend_euclid(a,n,x,y);
if(t!=) return -;
return (x%n+n)%n;
}
bool merge(__int64 a1,__int64 n1,__int64 a2,__int64 n2,__int64 &a3,__int64 &n3)
{
__int64 d=gcd(n1,n2);
__int64 c=a2-a1;
if(c%d) return false;
c=(c%n2+n2)%n2;
c/=d;
n1/=d;
n2/=d;
c*=inv(n1,n2);
c%=n2;
c*=n1*d;
c+=a1;
n3=n1*n2*d;
a3=(c%n3+n3)%n3;
return true;
}
__int64 china_reminder2(int len,__int64 *a,__int64 *n,__int64 &lcm)
{
__int64 a1=a[],n1=n[];
__int64 a2,n2;
for(int i=;i<len;i++){
__int64 aa,nn;
a2=a[i],n2=n[i];
if(!merge(a1,n1,a2,n2,aa,nn)) return -;
a1=aa;
n1=nn;
}
lcm=n1;
return (a1%n1+n1)%n1;
}
int main(void)
{
int t,n,m;
__int64 a[],b[],lcm;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(int i=;i<m;i++) scanf("%I64d",&a[i]);
for(int i=;i<m;i++) scanf("%I64d",&b[i]);
__int64 ans=china_reminder2(m,b,a,lcm);
//printf("%I64d %I64d\n",ans,lcm);
int result;
if(ans==- || n<ans) result=;
else{
result=(n-ans)/lcm+;
if(ans==) result--;
}
printf("%d\n",result);
}
return ;
}

hdu 1573 X问题 (非互质的中国剩余定理)的更多相关文章

  1. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  2. hdu 1573 X问题 不互质的中国剩余定理

    X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. POJ 2891 中国剩余定理的非互质形式

    中国剩余定理的非互质形式 任意n个表达式一对对处理,故只需处理两个表达式. x = a(mod m) x = b(mod n) km+a = b (mod n) km = (a-b)(mod n) 利 ...

  4. hdu 5072 两两(不)互质个数逆向+容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=5072 求n个不同的数(<=1e5)中有多少组三元组(a, b, c)两两不互质或者两两互质. 逆向求解,把 ...

  5. HDU5668 Circle 非互质中国剩余定理

    分析:考虑对给定的出圈序列进行一次模拟,对于出圈的人我们显然可以由位置,编号等关系得到一个同余方程 一圈做下来我们就得到了n个同余方程 对每个方程用扩展欧几里得求解,最后找到最小可行解就是答案. 当然 ...

  6. hdu 3579 Hello Kiki 不互质的中国剩余定理

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Probl ...

  7. POJ 2891- Strange Way to Express Integers CRT 除数非互质

    题意:给你余数和除数求x 注意除数不一定互质 思路:不互质的CRT需要的是将两个余数方程合并,需要用到扩展GCD的性质 合并互质求余方程 m1x -+ m2y = r2 - r1 先用exgcd求出特 ...

  8. 数学--数论--HDU1825(积性函数性质+和函数公式+快速模幂+非互质求逆元)

    As we all know, the next Olympic Games will be held in Beijing in 2008. So the year 2008 seems a lit ...

  9. poj2891非互质同余方程

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 8176   ...

随机推荐

  1. java 生成8位数字作为UID

    java 生成8位数字作为UUID: /*** * 生成uid 8位数字 */public static String generateUID(){ Random random = new Rando ...

  2. Pycharm 使用配置

    配置一下Pycharm吧,不然用着头疼 常用设置: 1. pycharm默认是自动保存的,习惯自己按ctrl + s 的可以进行如下设置: 1). file -> Setting -> G ...

  3. sqlserver开窗函数

    从 http://jimshu.blog.51cto.com/3171847/1376637/ 转 开窗函数是在 ISO 标准中定义的.SQL Server 提供排名开窗函数和聚合开窗函数. 在开窗函 ...

  4. php和js一起实现倒计时功能

    里获取的php服务端的时间 纯JS是获取客服端时间! <?php //php的时间是以秒算.js的时间以毫秒算 date_default_timezone_set('PRC'); //date_ ...

  5. [zz] demand require request用法辨析

    http://zhidao.baidu.com/link?url=9Q50HiOF1fWav1nSnREbc_H1jTuAHxAjeVLbZoB5bGO3ZehPxLhQdob4oGO3slMRl0W ...

  6. Orcal学习

    sqlplus有几种登陆方式 比如:1.C: > sqlplus "/as sysdba" --以操作系统权限认证的oracle sys管理员登陆2.C: > sqlp ...

  7. 利用WCF的双工通讯实现一个简单的心跳监控系统 z

    利用WCF的双工通讯实现一个简单的心跳监控系统 http://www.cnblogs.com/zuowj/p/5761011.html 何为心跳监控系统? 故名思义,就是监控某个或某些个程序的运行状态 ...

  8. 创建线程方式-NSOperation

    *:first-child { margin-top: 0 !important; } body > *:last-child { margin-bottom: 0 !important; } ...

  9. C++——CString用法大全

    列表形式的如下: CString的构造函数CString( );例:CString csStr; CString( const CString& stringSrc );例:CString c ...

  10. javascript MVC(每天有学习一点篇)

    “写的不是代码,是你的思维”,经常觉得自己写的代码“皮粗肉糙”的,看到那些要么精致小巧,要么优雅大方,要么光明磊落的代码时,常常会黯然神伤外加垂涎欲滴. why?(为什么我的代码不能如此..) whe ...