总时间限制: 
1000ms

内存限制: 
65536kB
描述
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。

比如,如下4 * 4的矩阵

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

的最大子矩阵是

9 2
-4 1
-1 8

这个子矩阵的大小是15。

输入
输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127, 127]。
输出
输出最大子矩阵的大小。
样例输入
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1 8 0 -2
样例输出
15
来源
翻译自 Greater New York 2001 的试题
----------------------------------
降维后用1维的DP计算最大值
枚举y1和y2,用二维前缀和或者对枚举边递推把x处y1和y2之间的一列压成一个格
//二维前缀和
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
int n,a[N][N],s[N][N],ans=-1e5,f[N];
void init(){
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
s[i][j]=s[i][j-]+s[i-][j]-s[i-][j-]+a[i][j];
}
inline int get(int x,int y1,int y2){
return s[x][y2]-s[x-][y2]-s[x][y1]+s[x-][y1];
}
int main(int argc, const char * argv[]) {
scanf("%d",&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++) scanf("%d",&a[i][j]);
init();
for(int y2=;y2<=n;y2++)
for(int y1=;y1<y2;y1++)
for(int x=;x<=n;x++){
f[x]=max(,f[x-])+get(x,y1,y2);
ans=max(ans,f[x]);
}
cout<<ans;
return ;
}
//c[x]递推,当前压缩的值
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
int n,a[N][N],c[N],ans=-1e5,f[N];
int main(int argc, const char * argv[]) {
scanf("%d",&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++) scanf("%d",&a[i][j]);
for(int y1=;y1<n;y1++){
memset(c,,sizeof(c));
for(int y2=y1+;y2<=n;y2++)
for(int x=;x<=n;x++){
c[x]+=a[x][y2];
f[x]=max(,f[x-])+c[x];
ans=max(ans,f[x]);
}
}
cout<<ans;
return ;
}

openjudge1768 最大子矩阵[二维前缀和or递推|DP]的更多相关文章

  1. Gym 102091L Largest Allowed Area 【二分+二维前缀和】

    <题目链接> 题目大意:给你一个由01组成的矩形,现在问你,该矩形中,最多只含一个1的正方形的边长最长是多少. 解题分析: 用二维前缀和维护一下矩形的01值,便于后面直接$O(1)$查询任 ...

  2. Memento Mori (二维前缀和 + 枚举剪枝)

    枚举指的是枚举矩阵的上下界,然后根据p0, p1, p2的关系去找出另外的中间2个点.然后需要记忆化一些地方防止重复减少时间复杂度.这应该是最关键的一步优化时间,指的就是代码中to数组.然后就是子矩阵 ...

  3. 2018 Multi-University Training Contest 4 Problem E. Matrix from Arrays 【打表+二维前缀和】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6336 Problem E. Matrix from Arrays Time Limit: 4000/20 ...

  4. HDU 6336.Problem E. Matrix from Arrays-子矩阵求和+规律+二维前缀和 (2018 Multi-University Training Contest 4 1005)

    6336.Problem E. Matrix from Arrays 不想解释了,直接官方题解: 队友写了博客,我是水的他的代码 ------>HDU 6336 子矩阵求和 至于为什么是4倍的, ...

  5. 洛谷P1719 最大加权矩形 (DP/二维前缀和)

    题目描述也没啥好说的,就是给你个你n*n的矩形(带权),求其中最大权值的子矩阵. 首先比较好想的就是二维前缀和,n<=120,所以可以用暴力. 1 #include<bits/stdc++ ...

  6. COGS1752 [BOI2007]摩基亚Mokia(CDQ分治 + 二维前缀和 + 线段树)

    题目这么说的: 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如“用户C的位置在哪?”的问题,精确到毫米.但其真正高科技之处在于,它 ...

  7. poj-3739. Special Squares(二维前缀和)

    题目链接: I. Special Squares There are some points and lines parellel to x-axis or y-axis on the plane. ...

  8. Good Bye 2015 C. New Year and Domino 二维前缀

    C. New Year and Domino   They say "years are like dominoes, tumbling one after the other". ...

  9. 计蒜客模拟赛D1T1 蒜头君打地鼠:矩阵旋转+二维前缀和

    题目链接:https://nanti.jisuanke.com/t/16445 题意: 给你一个n*n大小的01矩阵,和一个k*k大小的锤子,锤子只能斜着砸,问只砸一次最多能砸到多少个1. 题解: 将 ...

随机推荐

  1. [deviceone开发]-do_QRCode的简单示例

    一.简介 do_QRCode组件可以用来生成二维码,识别二维码图片文件,这个示例直观的展示组件基本的使用方式. 二.效果图 三.相关下载 https://github.com/do-project/c ...

  2. AngularJS结合RequireJS做文件合并压缩的那些坑

    我在项目使用了AngularJS框架,用RequireJS做异步模块加载(AMD),在做文件合并压缩时,遇到了一些坑,有些只是解决了,但不明白原因. 那些坑 1. build.js里面的paths必须 ...

  3. JavaScript学习笔记-自定义集合类

    //集合类Set( ES6标准才有的类,目前兼容性较差)//自定义集合类:extend = function (o,p){ //定义一个复制对象属性的类函数 for(var x in p){ o[x] ...

  4. iOS多线程中,队列和执行的排列组合结果分析

    本文是对以往学习的多线程中知识点的一个整理. 多线程中的队列有:串行队列,并发队列,全局队列,主队列. 执行的方法有:同步执行和异步执行.那么两两一组合会有哪些注意事项呢? 如果不是在董铂然博客园看到 ...

  5. Android 手机卫士--选中SettingItemView条目状态切换

    本文实现上篇文章中自定义组合控件中相关方法. checkBox是否选中,决定SettingItemView是否开启. 首先创建一个方法用于判断checkbox是否开启 /** * 判断是否开启的方法 ...

  6. ReactiveCocoa基础知识内容

    本文记录一些关于学习ReactiveCocoa基础知识内容,对于ReactiveCocoa相关的概念如果不了解可以网上搜索:RACSignal有很多方法可以来订阅不同的事件类型,ReactiveCoc ...

  7. oc TableView 分割线(separator)部分显示问题

    问题:当TableView的cell不能显示完整个屏幕(屏幕有剩余),则没有显示cell的地方也会显示分割线,这不是我们想要的,正常情况下,如果没有cell则应没有分割线.如下图所示:左图为遇到问题, ...

  8. iOS之 Xcode7下 bitcode的工作流程及安全评估

    文章参考来自http://www.freebuf.com/articles/others-articles/89806.html 很多朋友在升级Xcode7以后原有正常运行的工程在Xcode7下编译会 ...

  9. JSON TO NSDictionary Mac & iOS

    NSString * jsonPath=[[[NSBundle mainBundle] resourcePath] stringByAppendingPathComponent:@"Cont ...

  10. java jdbc 连接mysql数据库 实现增删改查

    好久没有写博文了,写个简单的东西热热身,分享给大家. jdbc相信大家都不陌生,只要是个搞java的,最初接触j2ee的时候都是要学习这么个东西的,谁叫程序得和数据库打交道呢!而jdbc就是和数据库打 ...