PIGS
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 20662   Accepted: 9435

Description

Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs. 
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold. 
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses. 
An unlimited number of pigs can be placed in every pig-house. 
Write a program that will find the maximum number of pigs that he can sell on that day.

Input

The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N. 
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000. 
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line): 
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.

Output

The first and only line of the output should contain the number of sold pigs.

Sample Input

3 3
3 1 10
2 1 2 2
2 1 3 3
1 2 6

Sample Output

7

Source


中文题面

1280: Emmy卖猪pigs

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 183  Solved: 123
[Submit][Status][Discuss]

Description

Emmy在一个养猪场工作。这个养猪场有M个锁着的猪圈,但Emmy并没有钥匙。顾客会到养猪场来买猪,一个接着一个。每一位顾客都会有一些猪圈的钥匙,他们会将这些猪圈打开并买走固定数目的猪。 所有顾客有的钥匙和他们需要买猪的数量在事先都告诉了Emmy,于是Emmy要订一个计划,使得卖出去的猪最多。 买卖的过程是这样的:一个顾客前来,并打开所有他可以打开的猪圈。然后Emmy从这些猪圈里牵出固定数目的猪卖给顾客(最多只能和顾客需要数相等),并可以重新安排这些开着的猪圈中的猪。 每个猪圈可以存放任意数目的猪。 写一个程序,使得Emmy能够卖出去尽可能多的猪。

Input

第一行有两个整数:M和N,表示猪圈数和顾客数。 第二行有M个整数,表示每个猪圈初始时有多少猪。 接下来的N行按照前来的次序描述了每一个顾客,每行的格式如下: A K1 K2…KA B A表示该顾客拥有的钥匙数,K1...KA表示每个钥匙所对应的猪圈,B表示该顾客需要购买的猪的数目。

Output

仅包含一个整数,即最多能卖出去的猪的数目。

朴素见图的话,因为一个人的购买影响下一个人,所以可以按每个购买分层
猪圈和人作为点,s连猪圈一开始数量,人连t购买数
每个人(购买)作为一个层次,从上个层次到下个层次同一个猪圈连INF,然后可以购买的(能合并在一起)互相连起来、
这样点n+nm,边2nm
 
考虑一些边没用,没必要每个人的购买都重新弄一批猪圈的点,保存每个猪圈当前到了那个人手里然后连INF就行了,因为下一个人能买这个猪圈,以前拿着猪圈的人打开的所有猪圈都可以
这样点n,边nm
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=,M=,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
} int m,n,s,t;
int pig[M],now[M];
struct edge{
int v,c,f,ne;
}e[N*M<<];
int cnt,h[N];
inline void ins(int u,int v,int c){
cnt++;
e[cnt].v=v;e[cnt].c=c;e[cnt].f=;e[cnt].ne=h[u];h[u]=cnt;
cnt++;
e[cnt].v=u;e[cnt].c=;e[cnt].f=;e[cnt].ne=h[v];h[v]=cnt;
}
int q[N],head,tail,vis[N],d[N];
bool bfs(){
memset(vis,,sizeof(vis));
memset(d,,sizeof(d));
head=tail=;
d[s]=;vis[s]=;
q[tail++]=s;
while(head!=tail){
int u=q[head++];
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(!vis[v]&&e[i].c>e[i].f){
vis[v]=;
d[v]=d[u]+;
q[tail++]=v;
if(v==t) return true;
}
}
}
return false;
}
int cur[N];
int dfs(int u,int a){
if(u==t||a==) return a;
int flow=,f;
for(int &i=cur[u];i;i=e[i].ne){
int v=e[i].v;
if(d[v]==d[u]+&&(f=dfs(v,min(a,e[i].c-e[i].f)))>){
flow+=f;
e[i].f+=f;
e[((i-)^)+].f-=f;
a-=f;
if(a==) break;
}
}
return flow;
}
int dinic(){
int flow=;
while(bfs()){
for(int i=s;i<=t;i++) cur[i]=h[i];
flow+=dfs(s,INF);
}
return flow;
}
int main(){
//freopen("in.txt","r",stdin);
m=read();n=read();s=;t=n+;
for(int i=;i<=m;i++) pig[i]=read();
for(int i=;i<=n;i++){
int A=read(),B,x;
while(A--){
x=read();
if(!now[x]) ins(s,i,pig[x]),now[x]=i;
else ins(now[x],i,INF),now[x]=i;
}
B=read();
ins(i,t,B);
}
printf("%d",dinic());
}
 
 

POJ1149 PIGS [最大流 建图]的更多相关文章

  1. POJ-1149 PIGS---最大流+建图

    题目链接: https://vjudge.net/problem/POJ-1149 题目大意: M个猪圈,N个顾客,每个顾客有一些的猪圈的钥匙,只能购买这些有钥匙的猪圈里的猪,而且要买一定数量的猪,每 ...

  2. poj 3281 最大流+建图

    很巧妙的思想 转自:http://www.cnblogs.com/kuangbin/archive/2012/08/21/2649850.html 本题能够想到用最大流做,那真的是太绝了.建模的方法很 ...

  3. hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙

    /** 题目:hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4106 ...

  4. poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙

    /** 题目:poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙 链接:http://poj.org/problem?id=3680 题意:给定n个区间,每个区间(ai,bi ...

  5. 图论--网络流--最小割 HDU 2485 Destroying the bus stations(最短路+限流建图)

    Problem Description Gabiluso is one of the greatest spies in his country. Now he's trying to complet ...

  6. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  7. poj1149 PIGS 最大流(神奇的建图)

    一开始不看题解,建图出错了.后来发现是题目理解错了.  if Mirko wants, he can redistribute the remaining pigs across the unlock ...

  8. poj 1149 Pigs 网络流-最大流 建图的题目(明天更新)-已更新

    题目大意:是有M个猪圈,N个顾客,顾客要买猪,神奇的是顾客有一些猪圈的钥匙而主人MIRKO却没有钥匙,多么神奇?顾客可以在打开的猪圈购买任意数量的猪,只要猪圈里有足够数量的猪.而且当顾客打开猪圈后mi ...

  9. poj 2135 Farm Tour 最小费用最大流建图跑最短路

    题目链接 题意:无向图有N(N <= 1000)个节点,M(M <= 10000)条边:从节点1走到节点N再从N走回来,图中不能走同一条边,且图中可能出现重边,问最短距离之和为多少? 思路 ...

随机推荐

  1. [翻译]开发文档:android Bitmap的高效使用

    内容概述 本文内容来自开发文档"Traning > Displaying Bitmaps Efficiently",包括大尺寸Bitmap的高效加载,图片的异步加载和数据缓存 ...

  2. MVVM模式和在WPF中的实现(二)数据绑定

    MVVM模式解析和在WPF中的实现(二) 数据绑定 系列目录: MVVM模式解析和在WPF中的实现(一)MVVM模式简介 MVVM模式解析和在WPF中的实现(二)数据绑定 MVVM模式解析和在WPF中 ...

  3. iOS从零开始学习直播之2.采集

      直播的采集由采集的设备(摄像头.话筒)不同分为视频采集和音频采集,本篇文章会分别介绍. 1.采集步骤   1.创建捕捉会话(AVCaptureSession),iOS调用相机和话筒之前都需要创建捕 ...

  4. 【转】Android开发中让你省时省力的方法、类、接口

    转载 http://www.toutiao.com/i6362292864885457410/?tt_from=mobile_qq&utm_campaign=client_share& ...

  5. atitit.管理学三大定律:彼得原理、墨菲定律、帕金森定律

    atitit.管理学三大定律:彼得原理.墨菲定律.帕金森定律 彼得原理(The Peter Principle) 1 彼得原理解决方案1 帕金森定律 2 如何理解墨菲定律2 彼得原理(The Pete ...

  6. 数据库 DML、DDL、DCL区别 .

    总体解释: DML(data manipulation language): 它们是SELECT.UPDATE.INSERT.DELETE,就象它的名字一样,这4条命令是用来对数据库里的数据进行操作的 ...

  7. Jenkins配置MSBuild实现自动部署(MSBuild+SVN/Subversion+FTP+BAT)

    所要用到的主要插件: [MSBuild Plugin] 具体操作: 1.配置MSBuild的版本 [系统管理]->[Global Tool Configuration]->[MSBuild ...

  8. 关于Linux和Windows下部署mysql.data.dll的注册问题

    mysql ado.net connector下载地址: http://dev.mysql.com/downloads/connector/net/ 选择版本: Generally Available ...

  9. API Monitor简介(API监控工具)

    API Monitor是一个免费软件,可以让你监视和控制应用程序和服务,取得了API调用. 它是一个强大的工具,看到的应用程序和服务是如何工作的,或跟踪,你在自己的应用程序的问题. 64位支持 API ...

  10. ABP(现代ASP.NET样板开发框架)系列之11、ABP领域层——仓储(Repositories)

    点这里进入ABP系列文章总目录 基于DDD的现代ASP.NET开发框架--ABP系列之11.ABP领域层——仓储(Repositories) ABP是“ASP.NET Boilerplate Proj ...